BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】
题目链接
题解
倍增的思想很棒
题目实际上就是每次让我们合并两个区间对应位置的数,最后的答案\(ans = 9 \times 10^{tot - 1}\),\(tot\)是联通块数,因为要去前导\(0\),首位不为\(0\)即可
如何快速合并两个区间?
倍增!
每次合并两个区间,我们就利用倍增分成\(logn\)个区间,先用并查集维护其联通性
合并完之后,由大区间推向小区间,将每个倍增的大区间分成两半,分别和其联通块的代表区间的两半合并
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,cnt,pre[maxn * 20],sta[maxn * 20],f[maxn][20],bin[30];
int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline int find(int u){return u == pre[u] ? u : pre[u] = find(pre[u]);}
inline void merge(int a,int b){
int fa = find(a),fb = find(b);
pre[max(fa,fb)] = min(fa,fb);
}
int main(){
bin[0] = 1; for (int i = 1; i <= 25; i++) bin[i] = bin[i - 1] << 1;
n = read(); m = read();
for (int j = 0; j <= 17; j++)
for (int i = 1; i <= n; i++){
if (i + bin[j] - 1 > n) break;
f[i][j] = ++cnt; sta[cnt] = i; pre[cnt] = cnt;
}
int l,r,ll,rr,len;
while (m--){
l = read(); r = read(); ll = read(); rr = read();
len = r - l + 1;
for (int i = 17; i >= 0; i--)
if (l + bin[i] - 1 <= r){
merge(f[l][i],f[ll][i]);
l += bin[i]; ll += bin[i];
}
}
int u;
for (int j = 17; j; j--)
for (int i = 1; i <= n; i++){
if (i + bin[j] - 1 > n) break;
u = find(f[i][j]);
if (sta[u] != i){
merge(f[i][j - 1],f[sta[u]][j - 1]);
merge(f[i + bin[j - 1]][j - 1],f[sta[u] + bin[j - 1]][j - 1]);
}
}
int tot = 0;
for (int i = 1; i <= n; i++) if (find(f[i][0]) == f[i][0]) tot++;
printf("%lld\n",9ll * qpow(10,tot - 1) % P);
return 0;
}
BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】的更多相关文章
- [bzoj4569][SCOI2016]萌萌哒-并查集+倍增
Brief Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,l1,r1,l2,r2,即两 ...
- [BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增)
[BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增) 题面 有一个n位的十进制数a(无前导0),给出m条限制,每条限制\((l_1,r_1,l_2,r_2)(保证 ...
- Luogu P3295 [SCOI2016]萌萌哒(并查集+倍增)
P3295 [SCOI2016]萌萌哒 题面 题目描述 一个长度为 \(n\) 的大数,用 \(S_1S_2S_3 \cdots S_n\) 表示,其中 \(S_i\) 表示数的第 \(i\) 位, ...
- BZOJ 4569: [Scoi2016]萌萌哒 [并查集 倍增]
传送门 题意:长为$n \le 10^5$的数字,给出$m \le 10^5$个限制$[l1,r1]\ [l2,r2]$两个子串完全相等,求方案数 把所有要求相等的位置连起来,不就是$9*10^{连通 ...
- 洛谷 3295 [SCOI2016]萌萌哒——并查集优化连边
题目:https://www.luogu.org/problemnew/show/P3295 当要连的边形如 “一段区间内都是 i 向 i+L 连边” 的时候,用并查集优化连边. 在连边的时候,如果要 ...
- LOJ2014 SCOI2016 萌萌哒 并查集、ST表优化连边
传送门 一个朴素的做法就是暴力连边并查集,可是这是\(O(n^2)\)的.发现每一次连边可以看成两个区间覆盖,这两个区间之间一一对应地连边.可线段树对应的两个节点的size可能不同,这会导致" ...
- bzoj 4569 [Scoi2016]萌萌哒 并查集 + ST表
题目链接 Description 一个长度为\(n\)的大数,用\(S_1S_2S_3...S_n\)表示,其中\(S_i\)表示数的第\(i\)位,\(S_1\)是数的最高位,告诉你一些限制条件,每 ...
- BZOJ4569 SCOI2016萌萌哒(倍增+并查集)
一个显然的暴力是用并查集记录哪些位之间是相等的.但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多. 于是考虑优化.使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][ ...
- 2018.07.31 bzoj4569: [Scoi2016]萌萌哒(并查集+倍增)
传送门 对于每个限制,使用倍增的二进制拆分思想,用并查集数组fa[i][j]" role="presentation" style="position: rel ...
随机推荐
- mybatis报错:查询一对多或多对多时只返回一条数据的问题
问题: 使用映射文件实现查询一对多或多对多时只返回一条数据问题 解决方法: 导致这种情况出现的问题是因为两个表中的主键是一样所以出现了数据覆盖问题. 解决方式一:修改数据库表中的主键(这种方法比较麻烦 ...
- android发布帖子类技术
最近练习一些关于发布帖子的技术,说来也简单,就学了一点皮毛吧!好了,下面就上代码吧! 首先设计服务器的访问类,大家都知道现在东西都要联网的嘛! JSONParser的类: public class J ...
- HTML5+ MUI实现ajax的一个demo
index.html <!DOCTYPE html> <html> <head> <meta charset="utf-8"> &l ...
- git上下载的thinkphp框架报错解决方法
git上下载的thinkphp5框架使用.gitignore没上传依赖,需要通过composer进行下载依赖,使用composer install或者composer update即可解决.
- pig分组统计例子
1.选取数据样本 在pig安装目录下有一个文件tutorial/data/excite-small.log,其中的数据分为3列,中间用制表符分隔,第一列为用户ID,第二列为Unix时间戳,第三列为查询 ...
- Python的jieba模块简介
现如今,词云技术遍地都是,分词模块除了jieba也有很多,主要介绍一下jieba的基本使用 import jieba import jieba.posseg as psg from os import ...
- 初识python 面向对象
what the f**k!!这个知识点学不好的最大元凶就是,我还单身??? python基础(四): 面向对象的三个特点: 封装,继承,多态 类: 对象是面向对象编程的核心,在使用对象的过程中,为了 ...
- kuangbin 最小生成树
A & M - Jungle Roads HDU - 1301 题意:字母之间的路,求最小生成树 题解:处理好建边以后就是一个Prime #include<cstdio> #inc ...
- R语言学习笔记(十五):获取文件和目录信息
file.info() 参数是表示文件名称的字符串向量,函数会给出每个文件的大小.创建时间.是否为目录等信息. > file.info("z.txt") size isdir ...
- 一步一步学Linq to sql(三):增删改
示例数据库 字段名 字段类型 允许空 字段说明 ID uniqueidentifier 表主键字段 UserName varchar(50) 留言用户名 PostTime datetime 留言时间 ...