bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559
关于拉格朗日插值,可以看这些博客:
https://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html
https://blog.csdn.net/qq_35649707/article/details/78018944
这个题要先想好DP方程。dp[ i ][ j ]表示第 i 门课、目前有 j 个人被“碾压”。
dp[ i ][ j ]=sigma( dp[ i-1 ][ k ] * C( k , j ) * C( n-k-1 , n-rk[ i ]-j ) * g[ i ] )。其中 g[ i ]=sigma(d=1~u[ i ]) d^(n-rk[ i ]) * ( u[ i ]-d )^(rk[ i ]-1)。
C( k , j )表示从上一次的 k 个人里选 j 个人作为这次还是分数<=自己的人;第二个C就是在已经不被碾压的人中选一些满足自己的排名。
然后每个人的分数是在自己之上还是在自己之下就确定了。枚举自己的分数,在自己之下的人每个有 d 种选择,在自己之上的人每个有 ( u[ ] - d ) 种选择。
g用拉格朗日插值算就行。是一个 n-1 次函数。但不知为何需要 n+1 个点才行。
注意 upd( ) 里写上 & !!!!!
负数的逆元果然可以是它相反数逆元的相反数。
最后是恰好 K 个人,不是大于等于 K 个人。
注意 g 是sigma的,不是单独的 d^( ) * ( )^( ) 。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
int n,m,t,u[N],rk[N],dp[N][N],c[N][N],g[N],y[N],inv[N],ans;
void upd(int &x){x>=mod?x-=mod:;x<?x+=mod:;}//////&!!!!!!!
int pw(int x,int k)
{
int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;
}
int calc(int lm,int n,int m)
{
int ret=,d=n+m+;//+2?
if(lm<=d)
{
for(int i=;i<=lm;i++)
ret=(ret+(ll)pw(i,n)*pw(lm-i,m))%mod;
return ret;
}
for(int i=;i<=d;i++)
{
y[i]=(y[i-]+(ll)pw(i,n)*pw(lm-i,m))%mod;//y[i-1]+* !!
int tmp=;
for(int j=;j<=d;j++)
{
if(j==i)continue;
if(i>j)
tmp=(ll)tmp*(lm-j)%mod*inv[i-j]%mod;
else
tmp=(ll)tmp*(j-lm)%mod*inv[j-i]%mod;
}
ret=(ret+(ll)tmp*y[i])%mod;
}
return ret;
}
void init()
{
for(int i=;i<=n;i++)c[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
c[i][j]=c[i-][j]+c[i-][j-],upd(c[i][j]);
for(int i=;i<=n;i++)inv[i]=pw(i,mod-);
for(int i=;i<=m;i++)
g[i]=calc(u[i],n-rk[i],rk[i]-);
}
int main()
{
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=m;i++)scanf("%d",&u[i]);
for(int i=;i<=m;i++)scanf("%d",&rk[i]);
init();
dp[][n-]=; int mn0=n-,mn1=n-;
for(int i=;i<=m;i++)
{
mn1=min(mn0,n-rk[i]);
for(int j=t;j<=mn1;j++)//t
{
for(int k=j;k<=mn0;k++)
if(dp[i-][k])
dp[i][j]=(dp[i][j]+(ll)dp[i-][k]*c[k][j]%mod*c[n--k][n-rk[i]-j]%mod*g[i])%mod;
}
mn0=mn1;
}
printf("%d\n",dp[m][t]);
return ;
}
bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值的更多相关文章
- bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
- ●BZOJ 4559 [JLoi2016]成绩比较
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 计数dp,拉格朗日插值法.真的是神题啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 ...
- ●BZOJ 4559 [JLoi2016]成绩比较(容斥)
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)
BZOJ 题意即求\[\sum_{i=0}^n\sum_{j=1}^{a+id}\sum_{x=1}^jx^k\] 我们知道最后一个\(\sum\)是自然数幂和,设\(f(n)=\sum_{x=1}^ ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...
- bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 261 Solved: 165[Submit][Status ...
随机推荐
- OpenStack虚拟机创建过程中镜像格式的的变化过程
Glance用来作为独立的大规模镜像查找服务,当它与Nova和Swift配合使用时,就为OpenStack提供了虚拟机镜像的查找服务,像所有的OpenStack项目一样,遵循以下设计思想: 基于组件的 ...
- [POI2008]账本BBB
题目 BZOJ 做法 明确: \(~~~1.\)为了达到目标分数所取反的次数是固定的 \(~~~2.\)为了满足前缀非负,得增加取反和滚动次数 滚动的次数可以枚举,增加的取反可以通过最小前缀和得到 滚 ...
- window.open、window.showModalDialog和window.showModelessDialog 的区别[转]
一.前言 要打开一个可以载入页面的子窗口有三种方法,分别是window.open.window.showModalDialog和window.showModelessDialog. open方法就是打 ...
- struts2中常用配置
1.Post提交乱码问题,如果编码采用的是utf-8,那么默认不需要自己处理,因为其默认的常量配置文件就是处理UTF-8的 这个常量值只处理POST提交,get如果乱码还得自己写拦截器处理,一般只要页 ...
- 分布式技术 memcached
memcached 是一个高性能的分布式内存对象缓存系统,用于动态web应用,以减轻数据库负载,它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.memcache ...
- keystone DB in devstack
~$ mysql -u -p root mysql> use keystone; mysql> show tables;+------------------------+| Tables ...
- 解决mysql登录报错:ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061)
今天在安装一个压缩包mysql-5.7.19时,碰到了一系列问题,现将这些问题罗列出来: 一. ERROR 2003 (HY000): Can't connect to MySQL server o ...
- python直接赋值,浅拷贝和深拷贝
本文参考自<Python 直接赋值.浅拷贝和深度拷贝解析> 定义 直接赋值:就是对象的引用(别名) 浅拷贝(copy):拷贝父对象,不拷贝对象内部的子对象 深拷贝(deepcopy):co ...
- java中base64
// 将 s 进行 BASE64 编码 public static String getBASE64(String s) { if (s == null) return null; return (n ...
- 使用饿了么ui表单验证报错: [Element Warn][Form]model is required for validat
[Element Warn][Form]model is required for validat 如文末的完整例子: 该提示说的是 form表单需要一个绑定一个 对象(使用:model=" ...