洛谷P4207 [NOI2005]月下柠檬树(计算几何+自适应Simpson法)
题面
题解
我还好奇自适应辛普森法干嘛用的呢……突然想起来积分的一个用处就是求曲边图形的面积……
我们先来考虑一下这些投影是什么形状
一个圆的投影还是它自己
一个圆锥的投影是一个圆加上一个点,以及这个点和圆的两条切线(如果点在圆内部就没有这两条切线)
一个圆台的投影是两个圆加上它们的公切线
最后这个鬼畜的图形大概是长这个样子
暴力求解即可
我们可以看做这是一个鬼畜的函数,我们要求它在这一段上的积分,那么就是这个封闭图形的面积了,自适应辛普森法即可
//minamoto
#include<bits/stdc++.h>
#define R register
#define sqr(x) ((x)*(x))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int N=1005;const double eps=1e-6;
struct node{double x,y;node(){}node(R double xx,R double yy):x(xx),y(yy){}}p;
struct cir{double x,r;cir(){}cir(R double xx,R double rr):x(xx),r(rr){}}C[N];
struct line{
node s,t;double k,b;
line(){}
line(R node ss,R node tt):s(ss),t(tt){k=(t.y-s.y)/(t.x-s.x),b=t.y-t.x*k;}
inline double f(R double x){return k*x+b;}
}L[N];
int n,tot;double h[N],ll=1e9,rr,ta,alp,x,r,a,b;
void add(const R cir &s,const R cir &t){
R double si=(s.r-t.r)/(t.x-s.x),co=sqrt(1-sqr(si)),ta=si/co;
++tot;
L[tot].s=node(s.x+s.r*si,s.r*co),L[tot].t=node(t.x+t.r*si,t.r*co),
L[tot].k=-ta,L[tot].b=L[tot].t.y-L[tot].t.x*L[tot].k;
}
double F(R double x){
R double res=0;
fp(i,1,tot)(x>=L[i].s.x&&x<=L[i].t.x)?cmax(res,L[i].f(x)):0;
fp(i,1,n)(x>=C[i].x-C[i].r&&x<=C[i].x+C[i].r)?cmax(res,sqrt(sqr(C[i].r)-sqr(x-C[i].x))):0;
return res;
}
double simpson(R double l,R double r){return (F(l)+F(r)+4*F((l+r)/2))*(r-l)/6;}
double calc(double l,double r,double eps,double res){
double mid=(l+r)/2,ql=simpson(l,mid),qr=simpson(mid,r);
if(fabs(ql+qr-res)<=15*eps)return ql+qr+(ql+qr-res)/15;
return calc(l,mid,eps/2,ql)+calc(mid,r,eps/2,qr);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%lf",&n,&alp),ta=tan(alp);
fp(i,1,n+1)scanf("%lf",&h[i]),h[i]+=h[i-1];
fp(i,1,n)scanf("%lf",&C[i].r),C[i].x=h[i]/ta;
p=node(h[n+1]/ta,0),x=C[n].x,r=C[n].r;
cmax(rr,p.x),cmax(rr,x+r),cmin(ll,x-r);
if(p.x>x+r)a=sqr(r)/(p.x-x),b=sqrt(sqr(r)-sqr(a)),L[++tot]=line(node(x+a,b),p);
fd(i,n-1,1){
cmax(rr,C[i].x+C[i].r),cmin(ll,C[i].x-C[i].r);
if(C[i+1].x-C[i].x>fabs(C[i+1].r-C[i].r))add(C[i],C[i+1]);
}
printf("%.2lf\n",2*calc(ll,rr,eps,simpson(ll,rr)));
return 0;
}
洛谷P4207 [NOI2005]月下柠檬树(计算几何+自适应Simpson法)的更多相关文章
- [NOI2005]月下柠檬树[计算几何(simpson)]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1169 Solved: 626[Submit][Status] ...
- 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: 562[Submit][Status] ...
- 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...
- [日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法
关于自适应Simpson法的介绍可以去看我的另一篇blog http://www.lydsy.com/JudgeOnline/problem.php?id=1502 题意:空间里圆心在同一直线上且底面 ...
- [NOI2005]月下柠檬树(计算几何+积分)
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...
- 【洛谷】P4207 [NOI2005]月下柠檬树
题解 原来自适应simpson积分是个很简单的东西! 我们尝试分析一下影子,圆的投影还是圆,圆锥的尖投影成一个点,而圆台的棱是圆的公切线,我们把圆心投影出来,发现平面上圆心的距离是两两高度差/tan( ...
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...
- 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分
[BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...
- [NOI2005]月下柠檬树
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Probl ...
随机推荐
- svn锁定问题解决
问题描述: 今天遇到svn文件被某个人锁定,搞得全部人都不能提交更新. 解决方法一: 首先,先定位到工程目录下,然后使用如下命令查看是否有锁 find . | grep ".svn/lock ...
- 请求时控制器的返回结果view()怎么会默认调到某个页面的?
请求时控制器的返回结果view()怎么会默认调到某个页面的? (1)请求时会拿方法行为的名字去和视图的名字对应,会默认去views视图下的与控制器名称一样的文件夹下名字与方法对应的视图文件匹配对应,然 ...
- MongDB安装使用
4.MongoDB 下载 MongoDB 提供了可用于 32 位和 64 位系统的预编译二进制包,你可以从MongoDB官网下载安装,MongoDB 预编译二进制包下载地址:https://www.m ...
- idata的各个类型
idata是51系列单片机能识别的存储器类型之一,固定指前面0x00-0xff的256个字节的片内RAM,其中前128字节和data的128字节完全相同,只是因为访问的方式不同.idata是用类似C中 ...
- cmd命令删除文件及文件夹
rmdir /s/q wenjianming 其中: /s 是代表删除所有子目录跟其中的档案. /q 是不要它在删除档案或目录时,不再问我 Yes or No 的动作.
- 使用alias让命令行更便捷
在linux命令行上调试程序,经常是这样子做: $ ps x | grep sceneserver pts/ S+ : grep sceneserver ? Ssl : ./sceneserver/s ...
- errant-transactions
https://www.percona.com/blog/2015/12/02/gtid-failover-with-mysqlslavetrx-fix-errant-transactions/ 使用 ...
- flask+jsonp跨域前后台交互(接口初体验)
1 # -*- coding: utf-8 -*- 2 from flask import Flask, jsonify 3 import psutil, time,json 4 5 app = Fl ...
- 201671010127 2016-2017-8 回谈static修饰符
上周学了泛型程序程序设计技术,再一次接触到了静态方法,那么今天就来谈一下static修饰符. static表示“全局”或者“静态”的意思,用来修饰成员变量和成员方法,也可以形成静态static代码块, ...
- leetcode:Median of Two Sorted Arrays分析和实现
这个问题的大意是提供两个有序的整数数组A与B,A与B并集的中间数.[1,3]与[2]的中间数为2,因为2能将A与B交集均分.而[1,3]与[2,4]的中间数为2.5,取2与3的平均值.故偶数数目的中间 ...