FBI树
题目描述
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
1) T的根结点为R,其类型与串S的类型相同;
2) 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2^N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历序列。
输入输出格式
输入格式:
第一行是一个整数N(0 <= N <= 10),第二行是一个长度为2^N的“01”串。
输出格式:
包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
bool x[2000];
int y[5000],a,b,c,d,e,f,g,m,n,k,cnt,bnt,dnt,mmp;
char z,z1[20];
int cot(int p)
{
if(y[p]==3)
{
cout<<"F";
}
if(y[p]==2)
{
cout<<"I";
}
if(y[p]==1)
{
cout<<"B";
}
}
int print(int l)
{
if(mmp==g)
{
return 0;
}
if(y[l*2]==0)
{
cot(l);
mmp++;
y[l]=0;
if(l%2==0)
{
print(l+1);
}
else
{
print(l/2);
}
}
else
{
print(l*2);
}
}
int main()
{
cin>>m;
n=1;
k=1;
for(a=1;a<=m;a++)
{
n=n*2;
k=k+n;
}
g=k;
f=n;
for(a=1;a<=n;a++)
{
cin>>z;
if(z=='0')
{
x[a]=0;
}
else
{
x[a]=1;
}
} // for(a=1;a<=n;a++)
// {
// cout<<x[a];
// }
for(a=1;a<=n;a++)
{
if(x[a]==1)
{
cnt=1;
}
else
{
bnt=1;
}
} if(cnt==1&&bnt==1)
{
y[1]=3;
}
else
{
if(cnt==1)
{
for(a=1;a<=k;a++)
{
cout<<"I";
}
return 0;
}
if(bnt==1)
{
for(a=1;a<=k;a++)
{
cout<<"B";
}
return 0;
}
}
cnt=0;
bnt=0;
dnt++; // g=n;
for(a=1;a<=m;a++)
{
n=n/2;
k=f/n;
for(b=1;b<=k;b++)
{
for(c=(b-1)*n+1;c<=n*b;c++)
{
if(x[c]==1)
{
cnt=1;
}
else
{
bnt=1;
}
}
dnt++;
if(cnt==1&&bnt==1)
{
y[dnt]=3;
}
else
{
if(cnt==1)
{
y[dnt]=2;
}
if(bnt==1)
{
y[dnt]=1;
}
}
cnt=0;
bnt=0;
}
} n=f/2;
print(n);
return 0;
// gets(z1);
// for(a=1;a<=g;a++)
// {
// if(y[a]==3)
// {
// cout<<"F";
// }
// if(y[a]==2)
// {
// cout<<"I";
// }
// if(y[a]==1)
// {
// cout<<"B";
// }
// }
// system("pause");
return 0; }
FBI树的更多相关文章
- Vijos 1114 FBI树
描述 我们可以把由"0"和"1"组成的字符串分为三类:全"0"串称为B串,全"1"串称为I串,既含"0&quo ...
- 【递归】Vijos P1114 FBI树(NOIP2004普及组第三题)
题目链接: https://vijos.org/p/1114 题目大意: 把01串一分为二,左半边描述当前节点左子树,右半边描述右子树,子树全为1则为I节点,全为0则为B节点,混合则为F节点,直到当前 ...
- 创建FBI树
需求:数串由2^n个'0' '1'数串组成,对于一个数串,有01混合出现,则视为F,全0数串为B,全1数串为I. 将给定数串进行切割,如10010011可以用二叉树表示为 F(10010011) / ...
- 蓝桥杯之FBI树问题
问题描述 我们可以把由"0"和"1"组成的字符串分为三类:全"0"串称为B串,全"1"串称为I串,既含"0&q ...
- noip普及组2004 FBI树
FBI树 描述 我们可以把由"0"和"1"组成的字符串分为三类:全"0"串称为B串,全"1"串称为I串,既含" ...
- Vijos P1114 FBI树【DFS模拟,二叉树入门】
描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串. FBI树是一种二叉树1,它的结点类型也包括F结点,B结点和I结点三种 ...
- [题解]ybt1365:FBI树(fbi)
ybt1365:FBI树(fbi) [题目描述] 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串. FBI树是一种二叉树,它 ...
- FBI树-数据结构(二叉树)
问题 B: [2004_p4]FBI树-数据结构 时间限制: 1 Sec 内存限制: 125 MB提交: 57 解决: 46 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称 ...
- C语言 · FBI树
算法训练 FBI树 时间限制:1.0s 内存限制:256.0MB 锦囊1 二叉树. 问题描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I ...
- FBI树(第一次做建树题)
试题来源 NOIP2004 普及组 问题描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串. FBI树是一种二叉树,它的结 ...
随机推荐
- IO流之递归
递归: 递归,指在当前方法内调用自己的这种现象 public void method(){ System.out.println(“递归的演示”); //在当前方法内调用自己 method(); } ...
- 面向对象三大特性——封装(含property)
一.封装概念 封装是面向对象的特征之一,是对象和类概念的主要特性. 封装就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏. 二.隐藏属性 在p ...
- .Net常用的命名空间
-----------常用的命名空间--------地狱的镰刀 System.Collections //命名空间包含接口和类,这些接口和类定义各种对象(如列表.队列.位数组.哈希表和字典)的集合. ...
- Java设计模式—门面模式(带案例分析)
1.门面模式的定义: 门面模式(Facade Pattern)也叫做外观模式,是一种比较常用的封装模式,其定义如下: 要求一个子系统的外部与其内部的通信必须通过一个统一的对象进行.门面模式 ...
- python ftp download with progressbar
i am a new one to learn Python. Try to download by FTP. search basic code from baidu. no one tells h ...
- Python数组使用
python数组的使用 2010-07-28 17:17 1.Python的数组分三种类型: (1) list 普通的链表,初始化后可以通过特定方法动态增加元素. 定义方式:arr = [元素] (2 ...
- Siebel应用数据结构层次
在Siebel应用里数据在多个层次上使用了不同的定义方式,每一个层次侧重于数据的不同的特征,主要分为数据用户界面层定义(UI),业务逻辑层定义(Business Layer,可以是业务含义层)以及数据 ...
- siebel学习笔记-应用/数据访问控制
应用/数据访问控制Siebel提供的两种主要的访问控制方式在View级别和Data(record)级别: 1.View级别的访问控制:一个企业通常按照功能进行工作的区分,分配给一个用户的功能决定了他能 ...
- Hadoop ->> HIVE
HIVE的由来: 最初由Facebook基于HDFS开发出来的一套数据仓库工具. HIVE可以干什么? HIVE可以将已经结构化的数据映射成一张表,然后可以使用HIVE语言像写T-SQL一样查询数据. ...
- 4.Zabbix 3.0 案例
请查看我的有道云笔记: http://note.youdao.com/noteshare?id=2807c0910cd63d309e1462128a31ae0e&sub=241A94E5717 ...