P4234 最小差值生成树
题目
做法
和这题解法差不多,稍微变了一点,还不懂就直接看代码吧
\(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代替掉环内的最小边
就可以用\(LCT\)维护
My complete code
#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<set>
using namespace std;
typedef int LL;
const LL maxn=500000,B=(1<<18),inf=0x3f3f3f3f;
inline LL Read(){
LL x(0),f(1);char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
struct E{
LL u,v,d;
inline bool operator <(const E &x)const{
return d<x.d;
}
}dis[maxn];
LL Mi=inf,n,m,num,ret,ans;
LL son[maxn][2],fa[maxn],mi[maxn],r[maxn],sta[maxn];
bool visit[maxn];
inline void Update(LL x){
mi[x]=x;
if(dis[mi[son[x][0]]].d<dis[mi[x]].d) mi[x]=mi[son[x][0]];
if(dis[mi[son[x][1]]].d<dis[mi[x]].d) mi[x]=mi[son[x][1]];
}
inline bool Notroot(LL x){
return son[fa[x]][0]==x||son[fa[x]][1]==x;
}
inline void Pushr(LL x){
swap(son[x][0],son[x][1]);r[x]^=1;
}
inline void Pushdown(LL x){
if(r[x]){
if(son[x][0]) Pushr(son[x][0]);
if(son[x][1]) Pushr(son[x][1]);
r[x]=0;
}
}
inline void Rotate(LL x){
LL y(fa[x]),z(fa[y]),lz(son[y][1]==x);
if(Notroot(y)) son[z][son[z][1]==y]=x; fa[x]=z;
son[y][lz]=son[x][lz^1];
if(son[y][lz]) fa[son[y][lz]]=y;
son[x][lz^1]=y, fa[y]=x;
Update(y),Update(x);
}
inline void Splay(LL x){
LL y(x),top(0); sta[++top]=y;
while(Notroot(y)) sta[++top]=y=fa[y];
while(top) Pushdown(sta[top--]);
while(Notroot(x)){
y=fa[x];
if(Notroot(y)){
LL z(fa[y]);
if(((son[z][1]==y)^(son[y][1]==x))==0) Rotate(y);
else Rotate(x);
}Rotate(x);
}
}
inline void Access(LL x){
for(LL y=0;x;y=x,x=fa[x])
Splay(x),son[x][1]=y,Update(x);
}
inline void Makeroot(LL x){
Access(x),Splay(x),Pushr(x);
}
inline void Split(LL x,LL y){
Makeroot(x),Access(y),Splay(y);
}
inline LL Findroot(LL x){
Access(x),Splay(x);
while(son[x][0]) x=son[x][0];
return x;
}
inline void Link(LL x){
LL u(dis[x].u),v(dis[x].v);
Makeroot(u),Makeroot(v);
fa[v]=x,fa[x]=u;
}
inline void Delet(LL x){
LL u(dis[x].u),v(dis[x].v);
Split(u,v),Splay(x);
son[x][0]=son[x][1]=fa[son[x][0]]=fa[son[x][1]]=0;
}
int main(){
n=Read(),m=Read();
for(LL i=1;i<=m;++i){
dis[i]=(E){Read(),Read(),Read()};
dis[i].u|=B,dis[i].v|=B;
}
sort(dis+1,dis+1+m);
dis[0].d=inf;
for(LL i=1;i<=n;++i)
dis[i|B].d=inf;
LL head(1);
for(LL i=1;i<=m;++i){
LL u(dis[i].u),v(dis[i].v);
if(u==v) continue;
if(Findroot(u)!=Findroot(v)){
Link(i);
++num,
visit[i]=true;
}
else{
Makeroot(u),Access(v),Splay(v);
visit[mi[v]]=false,
Delet(mi[v]),
visit[i]=true,
Link(i);
}
while(head<=m&&!visit[head]) ++head;
if(num==n-1&&dis[i].d-dis[head].d<Mi)
Mi=dis[i].d-dis[head].d;
}
printf("%d\n",Mi);
return 0;
}
P4234 最小差值生成树的更多相关文章
- 【刷题】洛谷 P4234 最小差值生成树
题目描述 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 \(n, m\) ,表示图的 ...
- 洛谷P4234 最小差值生成树(lct动态维护最小生成树)
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 n, mn,m ,表示图的点和边的数量. ...
- P4234 最小差值生成树 LCT维护边权
\(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...
- 【Luogu】P4234最小差值生成树(LCT)
题目链接 能把LCT打得每个函数都恰有一个错误也是挺令我惊讶的. 本题使用LCT维护生成树,具体做法是对原图中的每个边建一个点,然后连边的时候相当于是将边的起点跟“边”这个点连起来,边的终点也跟它连起 ...
- Luogu P4234 最小差值生成树
题意 给定一个 \(n\) 个点 \(m\) 条边的有权无向图,求出原图的一棵生成树使得该树上最大边权与最小边权的差值最小. \(\texttt{Data Range:}1\leq n\leq 5\t ...
- [洛谷P4234] 最小差值生成树
题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:求一棵生成树,其最大边权减最小边权最小 解题思路 和魔法森林非常像.先对所有边进行排序,每次加边的时候删除环上的最小 ...
- 洛谷P4234 最小差值生成树(LCT,生成树)
洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最 ...
- 洛谷 P4234 最小差值生成树(LCT)
题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...
- LuoguP4234_最小差值生成树_LCT
LuoguP4234_最小差值生成树_LCT 题意: 给出一个无向图,求最大的边权减最小的边权最小的一棵生成树. 分析: 可以把边权从大到小排序,然后类似魔法森林那样插入. 如果两点不连通,直接连上, ...
随机推荐
- [浪风前端开发]JS获取当前时间戳的方法
由于最近在研究轻交互式web设计,所以整理了下面的东东,仅供分享测试学习交流之用. JavaScript 获取当前时间戳:第一种方法: var timestamp = Date.parse(new D ...
- HTML CSS表格如何控制上下间距
css:td{margin-top:10px; 上间距margin-right:10px; 右间距margin-bottom:10px; 下间距margin-left:10px; 左间距}
- 怎样利用JDBC启动Oracle 自己主动追踪(auto trace)
有时我们须要对运行SQL的详细运行过程做一个追踪分析,特别是在应用程序性能优化的时候.Oracle两个工具能够帮助我们做好性能分析,一个是SQL_TRACE,一个是SESSION_EVENT.SQL_ ...
- HttpWatch使用教程
一 概述: HttpWatch强大的网页数据分析工具.集成在Internet Explorer工具栏.包括网页摘要.Cookies管理.缓存管理.消息头发送/接受.字符查询.POST 数据和目录管理功 ...
- Android 定时器Timer的使用
定时器有什么用 在我们Android客户端上有时候可能有些任务不是当时就执行,而是过了一个规定的时间在执行此次任务.那么这个时候定时器的作用就非常有用了.首先开启一个简单的定时器 Timer time ...
- Android无线测试之—UiAutomator UiDevice API介绍六
一.灭屏和唤醒屏幕相关知识: 1)灭屏:按电源键将屏幕熄灭 2)唤醒屏幕:在灭屏状态下按电源键唤醒屏幕 二.灭屏与唤屏相关的API: 返回值 方法名 描述 void wakeUp() 模拟按电源键,如 ...
- 1、AEC-实用口语寒暄Greetings
(2) 想不到在这见到你世界真小啊.Fancy meeting you here .What a small world !It's a small world, isn't it ? (3) 好久不 ...
- 贝叶斯网(2)Netica:从数据中学习CPT
1. 离散节点 在官方Tutorial中是有详细的案例的,就是B篇3.3节,你可以动手把天气预报这个实现一下: http://www.norsys.com/tutorials/netica/secB/ ...
- 在前端眼中pc端和移动的开发区别
按照昨天所说,本包子今天将总结在前端开发中,pc端和移动端的区别,整理完这些区别,本包子将开始整理pc端的布局,会写实际的代码了,还是那句话,希望文章中有什么不足的地方,大家能多多指正,大家一起进步, ...
- DataTable数据筛选
DataView view = newDt.DefaultView;view.Sort = "Description asc,replyEnd desc";DataTable ta ...