Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always used to tell his students that when there is a square root of some number in one’s final result, it should be simplified by factoring out the largest square divisor of this number. For example, √ 12  = 2 √ 3 . Therefore, if an integer n has a square divisor, i.e. there is a number d > 1 such that d2 divides n, then the square root of n needs to be simplified.

Tiny himself should generate for homework some number whose square root needs simplifying. Since he used to major in Computer Science, he prefers random numbers. Therefore, he randomly chose a number n and decided to use the n-th smallest number whose square root needs simplifying in today’s homework.

Since the n-th such number is too large for him to deal with, Tiny Wong is lost in thought. Would you please help him?

Input

The first and only line of the input contains a single integer n.

Note: the number n is not fixed for each test case. Instead, it will be generated dynamically, so it may be different for each run of your program. For each test case, n is generated in the following way: we have two fixed numbers L and Rn will be chosen uniformly at random from all integers between L and R inclusive.

Note 2: Due to dynamically generated test cases, the problem is technically configured as interactive, thus reading until EOF will not work. Attempting to use any input method that expects EOF at the end will result in TLE verdict.

Output

Print a single line containing one integer — the n-th number whose square root needs simplifying.

Constraints

      1 ≤

n

      ≤ 10

18

Subtasks

Subtask #1 (6 points): 1 ≤ n ≤ 107

Subtask #2 (17 points): 1 ≤ n ≤ 1014

Subtask #3 (27 points): 1 ≤ n ≤ 1016

Subtask #4 (50 points): 1 ≤ n ≤ 1018

Example

Input:

4

Output:

12

Explanation

The first 4 numbers whose square roots need simplifying are 4, 8, 9 and 12.

 思路:见:https://blog.csdn.net/gjghfd/article/details/79137620 。

//求第N个含平方因子数时,可以把二分范围限制到如此,而筛不含平方因子数的时候,可以把上界限制到2N。
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const double pi=acos(-1.0);
map<int,int>M;
int mu[maxn],mu2[maxn],p[maxn>>],cnt; bool vis[maxn];
void init()
{
mu[]=; mu2[]=;
rep(i,,maxn-){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
for(int j=,t;j<=cnt&&(t=p[j]*i)<maxn;j++){
mu[t]=-mu[i]; vis[t]=; //少做几次乘法
if(!(i%p[j])) {mu[t]=; break;}
}
}
rep(i,,maxn-) mu2[i]=mu2[i-]+(!mu[i]?:),mu[i]+=mu[i-];
}
int musum(int x)//莫比乌斯前缀和
{
if(x<maxn) return mu[x];
if(M.count(x))return M[x];
int res=;
for(int i=,j;i<=x;i=j+){
int k=x/i; j=x/k;
res-=musum(k)*(j-i+);
}
return M[x]=res;
}
ll nonfsum(ll x) //无平方因子前缀和
{
if(x<maxn) return mu2[x];
ll i=,res=,lst=,R,t;
for(;i*i*i<=x;i++) res+=(x/(i*i))*(mu[i]-lst),lst=mu[i];
for(res-=(t=x/(i*i))*lst;t;t--) res+=musum(sqrt(x/t));
return res;
}
int main(){
init();
ll N,ans,l,r,Mid;
scanf("%lld",&N);
l=N/(-/pi/pi),r=l+,l-=; //大致范围
l=max(l,1LL);
while(l<=r){
Mid=l+r>>;
if(Mid-nonfsum(Mid)>=N) ans=Mid,r=Mid-;
else l=Mid+;
}
printf("%lld\n",ans);
return ;
}

CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)的更多相关文章

  1. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  2. Project Euler 57: Square root convergents

    五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...

  3. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. Codeforces 612E - Square Root of Permutation

    E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...

  5. Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))

    C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  7. Square Root

    Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...

  8. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

  9. Plus and Square Root

    ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, ...

随机推荐

  1. C语言中auto,register,static,const,volatile的区别

    1)auto 这个关键字用于声明变量的生存期为自动,即将不在任何类.结构.枚举.联合和函数中定义的变量视为全局变量,而在函数中定义的变量视为局部变量.这个关键字不怎么多写,因为所有的变量默认就是aut ...

  2. 查看linux系统版本信息(Oracle Linux、Centos Linux、Redhat Linux、Debian、Ubuntu)

    一.查看Linux系统版本的命令(3种方法) 1.cat /etc/issue,此命令也适用于所有的Linux发行版. [root@S-CentOS home]# cat /etc/issue Cen ...

  3. MODBUS协议 一种问答方式的通信协议

    源:MODBUS协议 一种问答方式的通信协议 ModBus通信系统协议

  4. 主攻ASP.NET.4.5.1 MVC5.0之重生:Web项目语音朗读网页文本,简单语音提示浏览状态

    第一步 添加SpeechLib.dll 下载SpeechLib.dll: 在项目中并且引用DLL using SpeechLib; using System.Threading; 第二步 调用并使用 ...

  5. awk的控制语句

    本章主要讲actions中的控制语句,和C语言的控制语句类似. 1.选择语句 if (condition) then-body else else-body 2.循环语句之while: while ( ...

  6. golang注册码

    许可证服务认证 由于更新,最近注册码都不能用了,下面是能用的, http://idea.youbbs.org

  7. python 中文字符的处理

    刚开始学习python的时候,都是对这英文的翻译书学习的.没有解除到中文编码的相关问题,直到自己用python去做相关的项目的时候才发先中文编码问题真的非常头疼啊.这里分享一下本人所了解的一些经验. ...

  8. ZooKeeper-安装和运行

    ZooKeeper安装和运行 1. 下载安装包 zookeeper-3.4.9.tar.gz 2. 解压 tar -zxvf zookeeper-3.4.9.tar.gz ZooKeeper提供了几个 ...

  9. 利用Phoenix为HBase创建二级索引

    为什么需要Secondary Index 对于Hbase而言,如果想精确地定位到某行记录,唯一的办法是通过rowkey来查询.如果不通过rowkey来查找数据,就必须逐行地比较每一列的值,即全表扫瞄. ...

  10. 汇编笔记 CALL(1)

    assume cs:code code segment start: mov ax, ;将AX通用寄存器设0 call s inc ax s: pop ax ;将数据从桟中取出 code ends e ...