[BZOJ2190&BZOJ2705]欧拉函数应用两例
欧拉函数phi[n]是表示1~n中与n互质的数个数。
可以用公式phi[n]=n*(1-1/p1)*(1-1/p2)*(1-1/p3)...*(1-1/pk)来表示。(p为n的质因子)
求phi[p]的过程:
procedure calc(p:longint;var sum:longint);
var i:longint;
begin
sum:=p;
for i:= to trunc(sqrt(p)) do
if p mod i= then
begin
sum:=sum div i*(i-);
while p mod i= do p:=p div i;
// 保证每次都是质因子
end;
if p<> then sum:=sum div p*(p-);
// 如果p自身是质数的情况
end;
BZOJ2190
直接套用即可,不处理1的情况最后加上3。需要注意的是读进来的方阵大小应该-1。
直接贴代码。
program bzoj2190;
const maxn=;
var n,i,ans:longint;
phi:array[-..maxn]of longint;
procedure calc(p:longint;var sum:longint);
var i:longint;
begin
sum:=p;
for i:= to trunc(sqrt(p)) do
if p mod i= then
begin
sum:=sum div i*(i-);
while p mod i= do p:=p div i;
end;
if p<> then sum:=sum div p*(p-);
end; begin
readln(n);dec(n);
for i:= to n do calc(i,phi[i]);
ans:=;
for i:= to n do inc(ans,phi[i]);
if n<> then writeln(ans*+) else writeln();
end.
BZOJ 2705
刚开始看可能无从下手。但是再看一眼会发现,如果枚举某个数与n的最大公约数,再求出这样的数有多少的话可能就有方法处理了。
我们来思考有多少个数与n的最大公约数是x,不难想出,当这个数/x,n/x的时候两数互质。也就是其个数=phi[n/x]!
所以只需要枚举所有的最大公约数(枚举到sqrt(n))即可。
需要注意的是如果n正好是完全平方数,sqrt(n)会被计算两次。于是特判。
另外这道题给我们一点启发:sigma(phi[n/i])(n mod i=0)=n!
虽然目前还没有发现有哪里可以应用,但是式子非常优美。。>_<
program bzoj2705;
var i:longint;
ans,n:int64; function phi(p:int64):int64;
var i:longint;
ans:int64;
begin
ans:=p;
for i:= to trunc(sqrt(p)) do if p mod i= then
begin
ans:=ans*(i-) div i;
while p mod i= do p:=p div i;
end;
if p<> then ans:=ans*(p-) div p;
exit(ans);
end; begin
//sign(input,'a.in');reset(input);
while not eof do
begin
readln(n);
ans:=;
for i:= to trunc(sqrt(n)) do if n mod i= then
begin
inc(ans,i*phi(n div i));
if i*i<>n then inc(ans,(n div i)*phi(i));
end;
writeln(ans);
end;
end.
[BZOJ2190&BZOJ2705]欧拉函数应用两例的更多相关文章
- Bzoj-2190 仪仗队 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 简单的欧拉函数题,实际上就是求gcd(x,y)=1, 0<=x,y<=n ...
- NOIP模拟:切蛋糕(数学欧拉函数)
题目描述 BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...
- 51nod 1363 最小公倍数的和 欧拉函数+二进制枚举
1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3 ...
- BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- BZOJ2190 [SDOI2008]仪仗队(欧拉函数)
与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- 【bzoj2190】[SDOI2008]仪仗队 欧拉函数
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...
- 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数
[bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...
随机推荐
- 如何搭建SBT编译Scala开发的Android工程
作者:戚明峰 最近接触了shadowsocks的Android客户端项目源码(https://github.com/shadowsocks/shadowsocks-android),刚好这个项目是使用 ...
- es2017中的async和await要点
1. async和await最关键的用途是以同步的写法实现了异步调用,是对Generator异步方法的简化和改进.使用Generator实现异步的缺点如下: 得有一个任务执行器来自动调用next() ...
- C#操作Excel文件(转)
摘要:本文介绍了Excel对象.C#中的受管代码和非受管代码,并介绍了COM组件在.net环境中的使用. 关键词:受管代码:非受管代码:Excel对象:动态连接库 引言 Excel是微软公司办公自动化 ...
- Tensorflowonspark安装
1.实验环境 Centos7+Python3.6+Java8+Hadoop2.6+Spark2.3+Tensorflow1.10.0 2.Tensorflow安装 最简单的方式:pip install ...
- 从零开始搭建一个react项目
Nav logo 120 发现 关注 消息 4 搜索 从零开始搭建一个react项目 96 瘦人假噜噜 2017.04.23 23:29* 字数 6330 阅读 32892评论 31喜欢 36 项目地 ...
- wangEditor编辑器中解析html图文信息问题
在JS中,有一种方法:innerHTML 属性设置或返回表格行的开始和结束标签之间的 HTML. 也就是说,我们可以利用这个属性,把字符串转换为html代码,这样就可以被解析了. 其次,我们是需要在页 ...
- HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)
Problem Description Zero and One are good friends who always have fun with each other. This time, ...
- java获得采集网页内容的方法小结
为了写一个java的采集程序,从网上学习到3种方法可以获取单个网页内容的方法,主要是运用到是java IO流方面的知识,对其不熟悉,因此写个小结. import java.io.Buffe ...
- 修改maven远程仓库为阿里的maven仓库(复制)
maven之一:maven安装和eclipse集成 maven作为一个项目构建工具,在开发的过程中很受欢迎,可以帮助管理项目中的bao依赖问题,另外它的很多功能都极大的减少了开发的难度,下面来介绍ma ...
- 【WebService】——阶段小结
[概念] WebService集中解决了远程调用.跨平台和跨语言的问题.如下图中,A应用与B应用之间的相互调用不再局限于平台(Linux或Windows).语言(Java和C#). [与xml] 提到 ...