欧拉函数phi[n]是表示1~n中与n互质的数个数。

可以用公式phi[n]=n*(1-1/p1)*(1-1/p2)*(1-1/p3)...*(1-1/pk)来表示。(p为n的质因子)


求phi[p]的过程:

 procedure calc(p:longint;var sum:longint);
var i:longint;
begin
sum:=p;
for i:= to trunc(sqrt(p)) do
if p mod i= then
begin
sum:=sum div i*(i-);
while p mod i= do p:=p div i;
// 保证每次都是质因子
end;
if p<> then sum:=sum div p*(p-);
// 如果p自身是质数的情况
end;

BZOJ2190

  直接套用即可,不处理1的情况最后加上3。需要注意的是读进来的方阵大小应该-1。

  直接贴代码。

 program bzoj2190;
const maxn=;
var n,i,ans:longint;
phi:array[-..maxn]of longint;
procedure calc(p:longint;var sum:longint);
var i:longint;
begin
sum:=p;
for i:= to trunc(sqrt(p)) do
if p mod i= then
begin
sum:=sum div i*(i-);
while p mod i= do p:=p div i;
end;
if p<> then sum:=sum div p*(p-);
end; begin
readln(n);dec(n);
for i:= to n do calc(i,phi[i]);
ans:=;
for i:= to n do inc(ans,phi[i]);
if n<> then writeln(ans*+) else writeln();
end.

BZOJ 2705

  刚开始看可能无从下手。但是再看一眼会发现,如果枚举某个数与n的最大公约数,再求出这样的数有多少的话可能就有方法处理了。

  我们来思考有多少个数与n的最大公约数是x,不难想出,当这个数/x,n/x的时候两数互质。也就是其个数=phi[n/x]!

  所以只需要枚举所有的最大公约数(枚举到sqrt(n))即可。

  需要注意的是如果n正好是完全平方数,sqrt(n)会被计算两次。于是特判。

  另外这道题给我们一点启发:sigma(phi[n/i])(n mod i=0)=n!

  虽然目前还没有发现有哪里可以应用,但是式子非常优美。。>_<

  

 program bzoj2705;
var i:longint;
ans,n:int64; function phi(p:int64):int64;
var i:longint;
ans:int64;
begin
ans:=p;
for i:= to trunc(sqrt(p)) do if p mod i= then
begin
ans:=ans*(i-) div i;
while p mod i= do p:=p div i;
end;
if p<> then ans:=ans*(p-) div p;
exit(ans);
end; begin
//sign(input,'a.in');reset(input);
while not eof do
begin
readln(n);
ans:=;
for i:= to trunc(sqrt(n)) do if n mod i= then
begin
inc(ans,i*phi(n div i));
if i*i<>n then inc(ans,(n div i)*phi(i));
end;
writeln(ans);
end;
end.

[BZOJ2190&BZOJ2705]欧拉函数应用两例的更多相关文章

  1. Bzoj-2190 仪仗队 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 简单的欧拉函数题,实际上就是求gcd(x,y)=1, 0<=x,y<=n ...

  2. NOIP模拟:切蛋糕(数学欧拉函数)

    题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...

  3. 51nod 1363 最小公倍数的和 欧拉函数+二进制枚举

    1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3 ...

  4. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. BZOJ2190 [SDOI2008]仪仗队(欧拉函数)

    与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...

  6. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  7. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  8. 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...

  9. 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数

    [bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...

随机推荐

  1. 如何搭建SBT编译Scala开发的Android工程

    作者:戚明峰 最近接触了shadowsocks的Android客户端项目源码(https://github.com/shadowsocks/shadowsocks-android),刚好这个项目是使用 ...

  2. es2017中的async和await要点

    1. async和await最关键的用途是以同步的写法实现了异步调用,是对Generator异步方法的简化和改进.使用Generator实现异步的缺点如下: 得有一个任务执行器来自动调用next() ...

  3. C#操作Excel文件(转)

    摘要:本文介绍了Excel对象.C#中的受管代码和非受管代码,并介绍了COM组件在.net环境中的使用. 关键词:受管代码:非受管代码:Excel对象:动态连接库 引言 Excel是微软公司办公自动化 ...

  4. Tensorflowonspark安装

    1.实验环境 Centos7+Python3.6+Java8+Hadoop2.6+Spark2.3+Tensorflow1.10.0 2.Tensorflow安装 最简单的方式:pip install ...

  5. 从零开始搭建一个react项目

    Nav logo 120 发现 关注 消息 4 搜索 从零开始搭建一个react项目 96 瘦人假噜噜 2017.04.23 23:29* 字数 6330 阅读 32892评论 31喜欢 36 项目地 ...

  6. wangEditor编辑器中解析html图文信息问题

    在JS中,有一种方法:innerHTML 属性设置或返回表格行的开始和结束标签之间的 HTML. 也就是说,我们可以利用这个属性,把字符串转换为html代码,这样就可以被解析了. 其次,我们是需要在页 ...

  7. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  8. java获得采集网页内容的方法小结

          为了写一个java的采集程序,从网上学习到3种方法可以获取单个网页内容的方法,主要是运用到是java IO流方面的知识,对其不熟悉,因此写个小结. import java.io.Buffe ...

  9. 修改maven远程仓库为阿里的maven仓库(复制)

    maven之一:maven安装和eclipse集成 maven作为一个项目构建工具,在开发的过程中很受欢迎,可以帮助管理项目中的bao依赖问题,另外它的很多功能都极大的减少了开发的难度,下面来介绍ma ...

  10. 【WebService】——阶段小结

    [概念] WebService集中解决了远程调用.跨平台和跨语言的问题.如下图中,A应用与B应用之间的相互调用不再局限于平台(Linux或Windows).语言(Java和C#). [与xml] 提到 ...