POJ1258 (最小生成树prim)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 46319 | Accepted: 19052 |
Description
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.
Input
Output
Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output
28
Source
/*
ID: LinKArftc
PROG: 1258.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ; int mp[maxn][maxn];
int dis[maxn];
bool vis[maxn];
int n; int prim() {
int ret = ;
for (int i = ; i <= n; i ++) dis[i] = mp[i][];
dis[] = ;
vis[] = true;
int ii = ;
for (int i = ; i <= n; i ++) {
int mi = inf;
for (int j = ; j <= n; j ++) {
if (!vis[j] && dis[j] < mi) {
mi = dis[j];
ii = j;
}
}
vis[ii] = true;
ret += dis[ii];
for (int j = ; j <= n; j ++) {
if (!vis[j] && dis[j] > mp[j][ii]) dis[j] = mp[j][ii];
}
}
return ret;
} int main() { //input;
while (~scanf("%d", &n)) {
memset(mp, 0x3f, sizeof(mp));
memset(vis, , sizeof(vis));
for (int i = ; i <= n; i ++) {
for (int j = ; j <= n; j ++) scanf("%d", &mp[i][j]);
}
printf("%d\n", prim());
} return ;
}
POJ1258 (最小生成树prim)的更多相关文章
- 最小生成树—prim算法
最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[ ...
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 最小生成树Prim算法(邻接矩阵和邻接表)
最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...
- 转载:最小生成树-Prim算法和Kruskal算法
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...
- 最小生成树Prim
首先解释什么是最小生成树,最小生成树是指在一张图中找出一棵树,任意两点的距离已经是最短的了. 算法要点: 1.用book数组存放访问过的节点. 2.用dis数组保存对应下标的点到树的最近距离,这里要注 ...
- 最小生成树Prim算法和Kruskal算法
Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集 ...
- 最小生成树 Prim Kruskal
layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...
- poj1861 最小生成树 prim & kruskal
// poj1861 最小生成树 prim & kruskal // // 一个水题,为的仅仅是回味一下模板.日后好有个照顾不是 #include <cstdio> #includ ...
随机推荐
- Linux-Shell脚本编程-学习-1-Linux基本命令
在学习Linux-Shell脚本编程之前,我们需要学习一定的Linux基本命令,不然在后面学习Shell脚本编程的的时候,我们就呵呵了. 我学习所用的系统是Ubuntu 16.04版本 也没有什么规则 ...
- github 初始化操作小记
Git作为一种越来越重要的工具,github又如此流行,现在就简单记录一下git的基础操作,希望能帮助大家快速体验入门! 1 查看本地是否存在”公钥”和”私钥” 如果没有,则执行: ssh-keyg ...
- 简单的素数问题(C++)
[问题描述] 已知三个素数的和为 n ,正整数 n 由键盘输入,计算并输出这三个素数乘积的最大值. [代码展示] # include<iostream>using namespace st ...
- homework5 for java
- PAT 1084 外观数列
https://pintia.cn/problem-sets/994805260223102976/problems/994805260583813120 外观数列是指具有以下特点的整数序列: d, ...
- 【WebService】——SOAP、WSDL和UDDI
WebService的三要素:SOAP.WSDL和UDDI.soap用来描述传递信息的格式,wsdl描述如何访问具体的接口,uddi管理.分发查询WebService. 1.SOAP SOAP Sim ...
- (转)部署MongoDB时需要注意的调参
部署MongoDB的生产服务器,给出如下相关建议: 使用虚拟化环境: 系统配置 1)推荐RAID配置 RAID(Redundant Array of Independent Disk,独立磁盘冗余阵列 ...
- 从CUBIC/BBR的TCP ACK失速说起
上周有同事问,延迟ACK到底对应用层会产生什么后果,我也不知道该如何作答,于是丢了一个链接: TCP之Delay ACK在Linux和Windows上实现的异同-Linux的自适应ACK: 是的,这是 ...
- Windows关机过程分析与快速关机
原文链接:http://blog.csdn.net/flyoxs/article/details/3710367 Windows开机和关机慢,很多时候慢得令人抓狂.特别是做嵌入式开发时(如XPE和Wi ...
- BZOJ4568 [Scoi2016]幸运数字 【点分治 + 线性基】
题目链接 BZOJ4568 题解 选任意个数异或和最大,使用线性基 线性基插入\(O(logn)\),合并\(O(log^2n)\) 我们要求树上两点间异或和最大值,由于合并是\(O(log^2n)\ ...