[洛谷P3195][HNOI2008]玩具装箱TOY
题目大意:有n个物体,大小为$c_i$。把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$。费用最小.
题解:
$$令:a_i=\sum\limits_{i=1}^{i} c_i$$
$$dp_i=min(dp_j+(a_i+i-a_j-j-L-1)^2)$$
$$(以下称两点斜率为 slope(A,B) )$$
$$令:b_j=a_i+i,d_i=b_i+i+L+1$$
$$\therefore dp_i=dp_j+(b_i-d_j)^2$$
$$展开得:2a_i \cdot b_j+dp_i-a_i^2=dp_j+b_j^2$$
$$令:x_i=2b_i,y_i=dp_i+2b_i^2$$
斜率优化
卡点:无
C++ Code:
#include<cstdio>
using namespace std;
long long c[50010],f[50010],n,l;
int q[50010],h,t,tmp;
long long pw(long long i){return i*i;}
long long getb(int i){return c[i]+i;}
long long getd(int i){return getb(i)-l-1;}
long long getx(int i){return getb(i)*2;}
long long gety(int i){return f[i]+pw(getb(i));}
double slope(int a,int b){
return double(gety(a)-gety(b))/double(getx(a)-getx(b));
}
int main(){
scanf("%lld%lld",&n,&l);
for (int i=1;i<=n;i++)scanf("%lld",&c[i]),c[i]+=c[i-1];
for (int i=1;i<=n;i++){
while (h<t&&slope(q[h],q[h+1])<=getd(i))h++;
tmp=q[h];
f[i]=f[tmp]+pw(getd(i)-getb(tmp));
while (h<t&&slope(q[t-1],q[t])>=slope(q[t],i))t--;
q[++t]=i;
}
printf("%lld\n",f[n]);
return 0;
}
[洛谷P3195][HNOI2008]玩具装箱TOY的更多相关文章
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
- 洛谷 P3195 [HNOI2008]玩具装箱TOY
题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- 洛谷 P3195 [HNOI2008] 玩具装箱
链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...
- 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]
题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...
- 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)
qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
随机推荐
- 【php练习源码】
Something is wrong with the XAMPP installation :-( value[$name]=$sex; } public function getInfomatio ...
- C#中在WebClient中使用post发送数据实现方法
很多时候,我们需要使用C#中的WebClient 来收发数据,WebClient 类提供向 URI 标识的任何本地.Intranet 或 Internet 资源发送数据以及从这些资源接收数据的公共方法 ...
- 使用webBrowser进行C#和JS通讯
.前台调用后台: 在webBrowser使用过程中为了C#和js通讯,webBrowser必须设置ObjectForScripting的属性,它是一个object,这个object可以提供给webBr ...
- CentOS下安装pip
CentOS下安装pip 通常情况下使用命令: yum -y install pip 也有可能报错,无法安装.这是应该使用第二种方法. 1.首先需要先安装扩展源EPEL: yum -y install ...
- Shoot the Bullet(ZOJ3229)(有源汇上下界最大流)
描述 ensokyo is a world which exists quietly beside ours, separated by a mystical border. It is a utop ...
- 在WPF中创建可换肤的用户界面
原文:在WPF中创建可换肤的用户界面 在WPF中创建可换肤的用户界面. ...
- stm8编程tips(stvd)
编译完成时显示程序占用的flash和ram大小 将附件压缩包中的mapinfo.exe解压到stvd的安装路径\stvd中 在工程上点右键选settings 右侧的选项卡选择Linker,将categ ...
- SQL Server 2005 导出包含(insert into)数据的SQL脚本 (使用存储过程) 分类: 数据库
CREATE PROCEDURE dbo.UspOutputData @tablename sysname AS ) ) ) declare @xtype tinyint declare @name ...
- 每天一个Linux命令(13):apt命令
apt-get和apt-cache命令是Debian Linux发行版中的APT软件包管理工具.所有基于Debian的发行都使用这个包管理系统.deb包可以把一个应用的文件包在一起,大体就如同Wind ...
- 数据库sql命令
本文为转载,原文地址:http://www.cnblogs.com/cangqiongbingchen/p/4530333.html 1.说明:创建数据库CREATE DATABASE databas ...