运动控制中常用的T速度曲线规划的原理和程序实现,最后给出了测试结果;
如果本文帮到了您,请帮忙点个赞 ;
如果本文帮到了您,请帮忙点个赞 ;
如果本文帮到了您,请帮忙点个赞 ;

1 前言

在伺服系统以及控制系统的加减速动作中,为了让速度更加平滑,可以引入T型速度曲线规划(T-curve velocity profile),T曲线是工业界广泛采用的形式,它是一种时间最优的曲线。一般情况,曲线加速和减速的过程是对称的,设给定速度上限为vmaxv_{max}vmax​。加速度上限为amaxa_{max}amax​,被控对象从A点运动到B点,要求生成的轨迹在这些条件下时间最优1

2 理论分析

在整体系统高速启动,制动的状态下,可以提高整体系统的性能。每当系统完成一个动作的时候,总共包括三个过程,匀加速,匀速,匀减速,具体如下图所示;


根据vvv是否到达vmaxv_{max}vmax​,这里通常要分为两种情况来讨论;

  • 第一种:速度到达vmaxv_{max}vmax​,最终速度曲线为梯形
  • 第二种:速度没有到达vmaxv_{max}vmax​,最终速度曲线为三角形

下面仅讨论第一种情况;

这里时间使用ttt加脚标来表示,位置量使用ppp来表示,加速度使用aaa来表示

  • 设加速时间长度为tat_ata​:t0—t1t_0—t_1t0​—t1​;
  • 因为加速和减速的过程是对称的,所以减速带的时间长度也为tat_ata​:t2—t3t_2—t_3t2​—t3​;
  • 最大速度vmaxv_{max}vmax​c持续的时间长度为tmt_mtm​:t1—t2t_1—t_2t1​—t2​;

在实际的系统中,梯形曲线通常需要设置三个参数

  1. 最大速度vmaxv_{max}vmax​;
  2. 加速度amaxa_{max}amax​;
  3. 最终位置值PfinalP_{final}Pfinal​,下面简称为PfP_fPf​;

所以这三个参数可以作为已知量来处理;

下面简单推到这三个参数之间的关系:
设加减速区域经过的位置量为PaP_aPa​,则:
Pa=12amta2P_a = \cfrac{1}{2}a_mt_a^2Pa​=21​am​ta2​

设最大区域经过的位置量为PmP_mPm​,则:
{Pm=vmtm⋯①Pf=Pa+Pm+Pa⋯②ta=vmaxamax⋯③tm=(Pf−2Pa)vmax⋯④\begin{cases}P_m=v_mt_m \cdots ①\\ \\ P_f = P_a+P_m+P_a \cdots ②\\ \\ t_a = \cfrac{v_{max}}{a_{max}} \cdots ③\\ \\ t_m = \cfrac{(P_f - 2P_a)}{v_{max}} \cdots ④\end{cases}⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​Pm​=vm​tm​⋯①Pf​=Pa​+Pm​+Pa​⋯②ta​=amax​vmax​​⋯③tm​=vmax​(Pf​−2Pa​)​⋯④​
所以输出的位置量满足以下关系:
P(t)={12amt2,t0≤t≤t112amta2+vm(t−ta),t1<t≤t212amta2+vmtm+12am(t−tm−ta)2,t2<t≤t3P(t) = \begin{cases}\cfrac{1}{2}a_mt^2,t_0 \le t \le t_1 \\ \\ \cfrac{1}{2}a_mt_a^2 + v_m(t-t_a),t_1 < t \le t_2 \\ \\ \cfrac{1}{2}a_mt_a^2 + v_mt_m+\cfrac{1}{2}a_m(t-t_m-t_a)^2,t_2 < t \le t_3\\ \end{cases}P(t)=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​21​am​t2,t0​≤t≤t1​21​am​ta2​+vm​(t−ta​),t1​<t≤t2​21​am​ta2​+vm​tm​+21​am​(t−tm​−ta​)2,t2​<t≤t3​​
最终可以通过P(t)P(t)P(t)的关系以及①②③④式编写程序得到T型速度曲线规划。

3 matlab 实现

matlab的算法实现如下;

%% 梯形速度曲线
%% https://blog.csdn.net/u010632165
% Vm 最大熟读
% Am 最大加速度
% P 位置信号
%%
function t_curve(Vm,Am,P) %设置初始条件
t0=0;
P0=0;
Pf=P; %最终位置
v_max=Vm; %最大速度
a_max=Am; %最大加速度 ta=v_max/a_max; %加速和减速需要的时间
Pa=0.5*a_max*ta^2; %加速或减速产生的位置量
t_m=(Pf-2*Pa)/v_max;%最大速度需要的时间
t_f=t_m+2*ta; %到达目标位置所需要的时间 t=t0:0.1:t_f;
n=size(t);
Pt=zeros(n(2),1); i=1;
% 判断速度曲线规划属于哪一种情况
if t_f-2*ta>0
%达到最大速度,梯形
for t=t0:0.1:t_f
if t<=ta
Pt(i)=P0+0.5*a_max*t*t;
elseif ta<t && t<=t_f-ta
Pt(i)=P0+0.5*a_max*ta*ta+a_max*ta*(t-ta);
else
Pt(i)=Pf-0.5*a_max*(t_f-t)^2;
end
i=i+1;
end
else
% 未达到最大速度,速度曲线为三角形
ta=sqrt( (Pf-P0)/a_max);
t_f=2*ta;
for t=t0:0.1:t_f
if t<=ta
Pt(i)=P0+0.5*a_max*t*t;
else
Pt(i)=Pf-0.5*a_max*(t_f-t)^2;
end
i=i+1;
end end
subplot(3,1,1);
plot(Pt);
legend('位置曲线')
subplot(3,1,2);
plot(diff(Pt))
legend('速度曲线')
subplot(3,1,3);
plot(diff(diff(Pt)))
legend('加速度曲线')
end

4 测试结果

matlab的命令终端输入以下指令;

 t_curve(3,1,20)

设置最大速度为3,加速度为1,最终位置为20;
仿真曲线如下所示;

5 c语言实现

simulink中调用了c程序进行仿真测试,《一文教你快速学会在matlab的simulink中调用C语言进行仿真 》具体代码如下所示;

void sfun_myc_Outputs_wrapper(const real_T *u0,
const real_T *u1,
const real_T *u2,
const real_T *t,
real_T *y0,
real_T *y1,
real_T *y2)
{
/* %%%-SFUNWIZ_wrapper_Outputs_Changes_BEGIN --- EDIT HERE TO _END */
/* This sample sets the output equal to the input
y0[0] = u0[0];
For complex signals use: y0[0].re = u0[0].re;
y0[0].im = u0[0].im;
y1[0].re = u1[0].re;
y1[0].im = u1[0].im;
*/
/* %%%-SFUNWIZ_wrapper_Outputs_Changes_END --- EDIT HERE TO _BEGIN */
int Am = u0[0];
int Vm = u1[0];
int Pf = u2[0];
int T = t[0]; int Ta = Vm/Am;
int Tm = (Pf - Am*Ta*Ta)/Vm;
int Tf = 2*Ta+Tm;
printf("%d\r\n",Tf);
//梯形
if(Tm>0){
if(T <= Ta){
y0[0] = 0.5*Am*T*T;
y1[0] = Am*T;
y2[0] = Am;
}else if(T<=(Ta+Tm)){
y0[0] = 0.5*Am*Ta*Ta + Vm*(T-Ta);
y1[0] = Vm;
y2[0] = 0;
}else if(T<=(Ta+Tm+Ta)){
y0[0] = 0.5*Am*Ta*Ta + Vm*Tm + 0.5*Am*(T-Ta-Tm)*(T-Ta-Tm);
y1[0] = Vm-Am*(T-Ta-Tm);
y2[0] = -Am;
}
}else{
//三角形
Ta = sqrt(Pf/Am);
if(T<Ta){
y0[0] = 0.5*Am*T*T;
y1[0] = Am*T;
y2[0] = Am;
}else{
y0[0] = 0.5*Am*Ta*Ta + 0.5*Am*(T-Ta)*(T-Ta);
y1[0] = Am*Ta - Am*(T-Ta);
y2[0] = -Am;
}
}
}

仿真结果如下;

6 总结

T曲线是工业界广泛采用的形式,在运动控制上,相比较S曲线,它算法的复杂度更低,所占用的系统资源更少,但是在恒加速的拐点会出现过冲,这里S曲线就可以减少这种情况的发生。本文写的相对比较简单,笔者能力有限,难免出现错误和纰漏,希望大佬不吝赐教。

文中难免有错误和纰漏之处,请大佬们不吝赐教
创作不易,如果本文帮到了您;
请帮忙点个赞 ;
请帮忙点个赞 ;
请帮忙点个赞 ;


  1. 《S/T曲线速度规划在定点DSP上的实现》

一文教你快速搞懂速度曲线规划之T形曲线(超详细+图文+推导+附件代码)的更多相关文章

  1. 一文教你快速搞懂速度曲线规划之S形曲线(超详细+图文+推导+附件代码)

    本文介绍了运动控制终的S曲线,通过matlab和C语言实现并进行仿真:本文篇幅较长,请自备茶水: 请帮忙点个赞

  2. 一文教你快速搞懂 FOC ramp function 斜坡函数的作用和实现

    文章目录 定义 程序的实现 matlab 程序 C语言程序 定义 x(t)={0,t<0At,t≥0 x(t) = \begin{cases} 0,t<0\\ At,t \ge 0\\ \ ...

  3. 一文带你快速搞懂动态字符串SDS,面试不再懵逼

    目录 redis源码分析系列文章 前言 API使用 embstr和raw的区别 SDSHdr的定义 SDS具体逻辑图 SDS的优势 更快速的获取字符串长度 数据安全,不会截断 SDS关键代码分析 获取 ...

  4. 一篇文章快速搞懂Qt文件读写操作

    导读:Qt当中使用QFile类对文件进行读写操作,对文本文件也可以与QTextStream一起使用,这样读写操作会更加简便.QFileInfo可以用来获取文件的信息.QDir可以用于对文件夹进行操作. ...

  5. android基于口令加密快速搞懂(一)

    import java.util.Random; import javax.crypto.Cipher;import javax.crypto.SecretKey;import javax.crypt ...

  6. [转]快速搞懂Gson的用法

    原文地址:http://coladesign.cn/fast-understand-the-usage-of-gson/ 谷歌gson这个Java类库可以把Java对象转换成JSON,也可以把JSON ...

  7. 一文快速搞懂MySQL InnoDB事务ACID实现原理(转)

    这一篇主要讲一下 InnoDB 中的事务到底是如何实现 ACID 的: 原子性(atomicity) 一致性(consistency) 隔离性(isolation) 持久性(durability) 隔 ...

  8. 一文教你快速读懂MQTT网关

    MQTT是一种发布(publish)/订阅(subscribe)协议,MQTT协议采用发布/订阅模式,所有的物联网终端都通过TCP连接到云端,云端通过主题的方式管理各个设备关注的通讯内容,负责将设备与 ...

  9. 一篇文章快速搞懂Redis的慢查询分析

    什么是慢查询? 慢查询,顾名思义就是比较慢的查询,但是究竟是哪里慢呢?首先,我们了解一下Redis命令执行的整个过程: 发送命令 命令排队 命令执行 返回结果 在慢查询的定义中,统计比较慢的时间段指的 ...

随机推荐

  1. 移动硬盘临时文件太多怎么办,python黑科技帮你解决

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 星安果 PS:如果想了解更多关于python的应用,可以私信我,或者 ...

  2. C# 基础知识系列- 11 委托和事件

    0. 前言 事件和委托是C#中的高级特性,也是C#中很有意思的一部分.出现事件的地方,必然有委托出现:而委托则不一定会有事件出现.那为什么会出现这样的关系呢?这就需要从事件和委托的定义出发,了解其中的 ...

  3. 多线程高并发编程(5) -- CountDownLatch、CyclicBarrier源码分析

    一.CountDownLatch 1.概念 public CountDownLatch(int count) {//初始化 if (count < 0) throw new IllegalArg ...

  4. vue2.x学习笔记(二十三)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12639440.html. 渲染函数&JSX 基础 vue推荐在绝大多数的情况下使用模板来创建html.然而 ...

  5. DeepinV20系统文件管理器右键发送至为知笔记

    1. 创作背景 昨天在深度系统上做了一个打开文件管理器选择文件右键发送文本至博客园的插件. 这个插件对于我自己来说是及其方便的东西,平时的学习积累,工作经验或者生活感悟,随手记下之后,就能够轻松发送出 ...

  6. file_put_contens小trick

    file_put_contents tricks 0x01 trick1 来自于P神的实例: <?php $text = $_GET['text']; if(preg_match('[<& ...

  7. 博云DevOps 3.0重大升级 | 可用性大幅提升、自研需求管理&自定义工作流上线,满足客户多样化需求

    DevOps能够为企业带来更高的部署频率.更短的交付周期与更快的客户响应速度.标准化.规范化的管理流程,可视化和数字化的研发进度管理和可追溯的版本也为企业带来的了更多的价值.引入DevOps成为企业实 ...

  8. 挑战全网最幽默的Vuex系列教程:第六讲 Vuex的管理员Module(实战篇)

    写在前面 这一讲是 Vuex 基础篇的最后一讲,也是最为复杂的一讲.如果按照官方来的话,对于新手可能有点难以接受,所以想了下,决定干脆多花点时间,用一个简单的例子来讲解,顺便也复习一下之前的知识点. ...

  9. 使用 Python 控制自己的电脑和键盘是一种什么样的体验?python学习的正确姿势

    可能有时候你需要在电脑做一些重复的点击或者提交表单等操作,如果能通过 Python 预先写好相关的操作指令,让它帮你操作,然后你自己爱干嘛干嘛去,有点 “按键精灵” 的意思,是不是感觉有点爽呢? 那么 ...

  10. tp5中“前置操作”和“钩子函数”的区别

    1.实行顺序: 以下都是标为删除前的操作: 点击删除  ->  前置操作  ->  删除方法(用模型删除)  ->  触发钩子函数(删除)  ->  删除成功 2.传入的参数: ...