「SCOI2009」windy数
传送门
Luogu
解题思路
数位 \(\text{DP}\)
设状态 \(dp[now][las][0/1][0/1]\) 表示当前 \(\text{DP}\) 到第 \(i\) 位,前一个数是 \(las\),有没有顶到上界,有没有前导零的答案。
转移十分显然。
细节注意事项
- 咕咕咕
参考代码
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#include <vector>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= c == '-', c = getchar();
while (isdigit(c)) s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 11;
int a[_], dp[_][_];
inline int dfs(int now, int las, int lim, int zero) {
if (now == 0) return 1;
if (!lim && !zero && dp[now][las] != -1) return dp[now][las];
int res = 0, tp = lim ? a[now] : 9;
for (rg int j = 0; j <= tp; ++j)
if (abs(j - las) >= 2) {
int _lim = lim && j == tp;
int _zero = zero && j == 0;
int _las = _zero ? -2 : j;
int _now = now - 1;
res += dfs(_now, _las, _lim, _zero);
}
if (!lim && !zero) dp[now][las] = res;
return res;
}
inline int solve(int x) {
int n = 0;
for (rg int i = x; i; i /= 10) a[++n] = i % 10;
memset(dp, -1, sizeof dp);
return dfs(n, -2, 1, 1);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
int l, r;
read(l), read(r);
printf("%d\n", solve(r) - solve(l - 1));
return 0;
}
完结撒花 \(qwq\)
「SCOI2009」windy数的更多相关文章
- 「FJOI2016」神秘数 解题报告
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...
- LibreOJ2095 - 「CQOI2015」选数
Portal Description 给出\(n,k,L,R(\leq10^9)\),求从\([L,R]\)中选出\(n\)个可相同有顺序的数使得其gcd为\(k\)的方案数. Solution 记\ ...
- 「CQOI2015」选数
「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都 ...
- 【LOJ】#3094. 「BJOI2019」删数
LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以 ...
- 「BZOJ3505」[CQOI2014] 数三角形
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...
- BZOJ 1026 【SCOI2009】 windy数
Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? I ...
- 【BZOJ1026】【SCOI2009】windy数
Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? In ...
- 【数位DP】【SCOI2009】windy数
传送门 Description \(windy\)定义了一种\(windy\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(windy\)数.\(windy\)想知道, 在\(A\ ...
- [SCOI2009] [BZOJ1026] windy数
windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数?\(1 \le A \le ...
随机推荐
- Spring Boot 集成 Swagger2 教程
上篇讲过 Spring Boot RESTful api ,这篇简单介绍下 SwaggerUI 在 Spring Boot 中的应用. Swagger 是一个规范和完整的框架,用于生成.描述.调用和可 ...
- java集合知识点
若不重写equals方法,则调用的是object对象的equals方法,相当于==比较,比较的是对象的内存地址 |------Collection接口:单列集合,用来存储一个一个对象 |------L ...
- 20200213springboot日记
------------恢复内容开始------------ ------------恢复内容开始------------ ------------恢复内容开始------------ 数据库管理 L ...
- ArrayStack(栈)
顺序栈即数组型的栈.什么是栈呢?简单来说就像一个刚好装的下乒乓球大小的球筒,假设不能暴力打开球筒且只有一端有出口,那你放入或取出里面的球的操作都只能在一端进行,并且把球放进去或取出来都是由顺序决定的, ...
- ES查询不重复的数据
GET ana-apk/_search #查询不重复的mac地址{ "size": 10, "aggs": { "MAC": { ...
- 深入JAVA注解-Annotation(学习过程)
JAVA注解-Annotation学习 本文目的:项目开发过程中遇到自定义注解,想要弄清楚其原理,但是自己的基础知识不足以支撑自己去探索此问题,所以先记录问题,然后补充基础知识,然后解决其问题.记录此 ...
- 小白学 Python 爬虫:Selenium 获取某大型电商网站商品信息
目标 先介绍下我们本篇文章的目标,如图: 本篇文章计划获取商品的一些基本信息,如名称.商店.价格.是否自营.图片路径等等. 准备 首先要确认自己本地已经安装好了 Selenium 包括 Chrome ...
- ubuntu13.10安装增强功能
步骤: 1>cd /mnt 2> ./VBoxLinuxAdditions.run 3>设置共享文件夹share 4>访问共享文件夹cd /media/sf_share not ...
- 二十 Struts2的标签库,数据回显(基于值栈)
通用标签库 判断标签:<s:if>.<s:elseif>.<s:else> 循环标签:<s:iterator> 其他常用标签: <s:proper ...
- Spring学习(一)
搭建环境 1.创建普通的Java工程 2.添加相应的jar包,下载链接:https://files.cnblogs.com/files/AmyZheng/lib.rar,此外,为了打印信息,我们还需要 ...