Common Subsequence
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 41957   Accepted: 16927

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1,
i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find
the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0

这题三年之前估计就是看别人思路,自己写了一遍AC的,结果三年之后自己开始学习动态规划的时候,碰到了这种基础题目居然还是没想到思路,脸都不要了,真想敲自己脑袋啊。

题意很简单,求两个字符串的最长公共子序列。

标准的动态规划,用dp[i+1][j+1]表示到a的第i个字符,b的第j个字符时的最大长度。其实就是判断a[i]与b[j]是否相等,相等就在此基础之上加一。不相等就取dp[i][j+1]和dp[i+1][j]的最大值即可。

算法复杂度是O(i*j),i、j为两个字符串的长度。

代码:

#include<iostream>
#include<string>
#include<cstring>
using namespace std; int dp[500][500]; int main()
{
string a,b;
while(cin>>a>>b)
{
memset(dp,0,sizeof(dp));
int len1=a.length();
int len2=b.length(); int i,j; for(i=0;i<len1;i++)
{
for(j=0;j<len2;j++)
{
if(a[i]==b[j])
dp[i+1][j+1]=dp[i][j]+1;
else
dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
}
} cout<<dp[len1][len2]<<endl;
} return 0;
}

总结的话,就是自己为什么没能想到用dp[i][j]的数组来表示呢,我还咋想用dp[i]表示在第二个字符串中到第i个字符时的长度,然后之后在逐渐查找,但这样麻烦啊麻烦啊。所以总结就是自己为什么没能想到用这种方式表示呢?自己为什么没能想到用这种方式表示呢?

总而言之,只能记住这种最长公共子序列的方法,记住了这种方法,自己脑袋里的数据库也算多了一点,以后再遇到这类问题的时候还想不到的话,真的就要敲自己脑袋了。

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1458:Common Subsequence的更多相关文章

  1. 【POJ - 1458】Common Subsequence(动态规划)

    Common Subsequence Descriptions: A subsequence of a given sequence is the given sequence with some e ...

  2. UVa 10405 & POJ 1458 Longest Common Subsequence

    求最长公共子序列LCS,用动态规划求解. UVa的字符串可能含有空格,开始用scanf("%s", s);就WA了一次...那就用gets吧,怪不得要一行放一个字符串呢. (本来想 ...

  3. HDU1159 && POJ1458:Common Subsequence(LCS)

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

  4. 算法:Common Subsequence(动态规划 Java 最长子序列)

    Description A subsequence of a given sequence is the given sequence with some elements (possible non ...

  5. HDU 1159:Common Subsequence(LCS模板)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  6. hdu-题目1159:Common Subsequence

    http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Java/Oth ...

  7. OpenJudge/Poj 1458 Common Subsequence

    1.链接地址: http://poj.org/problem?id=1458 http://bailian.openjudge.cn/practice/1458/ 2.题目: Common Subse ...

  8. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  9. POJ 1458 Common Subsequence (动态规划)

    题目传送门 POJ 1458 Description A subsequence of a given sequence is the given sequence with some element ...

随机推荐

  1. Linux centosVMware Linux监控平台介绍、zabbix监控介绍、安装zabbix、忘记Admin密码如何做

    一.Linux监控平台介绍 cacti.nagios.zabbix.smokeping.open-falcon等等 cacti.smokeping偏向于基础监控,成图非常漂亮 cacti.nagios ...

  2. mysql如何查看表的索引以及如何删除表的索引

    mysql中如何查看和删除唯一索引. 查看唯一索引: show index from mytable;//mytable 是表名 查询结果如下: 查询到唯一索引后,如何删除唯一索引呢,使用如下命令: ...

  3. 分析一次double强转float的翻车原因(转载)

    https://www.cnblogs.com/CoderAyu/p/11489577.html float只能保证7位有效数字. double d = 8345933; float f = (flo ...

  4. delphi中的pansichar和pchar等类型的区别

    varc: Char; {Char 类型的取值范围是: #0..#255, 用十六进制表示是: #$0..#$FF}begin{用十进制方式赋值:}c := #65;ShowMessage(c); { ...

  5. 三 基于Java动态数组手写队列

    手写队列: package dataStucture2.stackandqueue; import com.lt.datastructure.MaxHeap.Queue; import dataStu ...

  6. Leet Code 8.字符串转换整数

    实现一个atoi函数,使其能将字符串转成整数,根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止.当我们寻找到的第一个非空字符为正或负号时,则将该符号与后面尽可能多的连续数字组合起来,作 ...

  7. http-equiv属性的属性值X-UA-Compatible

    参考:https://blog.csdn.net/changjiangbuxi/article/details/26054755

  8. linux动态库(.so)和静态库(.a)的区别

    静态库在程序编译时会被连接到目标代码中,程序运行时将不再需要该静态库.编译之后程序文件大,但加载快,隔离性也好. 动态库在程序编译时并不会被连接到目标代码中,而是在程序运行时才被载入,因此在程序运行时 ...

  9. 【攻防世界】 高手进阶区 Recho WP

    0x00 考察点 考察点有三个: ROP链构造 Got表劫持 pwntools的shutdown功能 0x01 程序分析 上来三板斧 file一下 checksec --file XXX chmod ...

  10. go语言的基础类型

    1.布尔类型:bool 2.整型:int8,byte,int16,int,uint,uintptr等 3.浮点类型:float32.float64 4.复数类型:complex64,complex12 ...