题意:有N个独立点,其中有P对可用电缆相连的点,要使点1与点N连通,在K条电缆免费的情况下,问剩下的电缆中,长度最大的电缆可能的最小值为多少。

分析:

1、二分临界线(符合的情况的点在右边),找可能的最小值,假设为mid。

2、将大于mid的边变为1,小于等于mid的边变为0(表示这些边由自己承包),由此算出1~N的最短路长度为x。x即为所用的大于mid的电缆个数。

3、若x<=K,则符合情况,但是想让所用的免费电缆条数x更多,所以让mid更小一些,这样自己承包的边也减少,x将更大,即r = mid;

4、若x>K,则所用免费电缆条数x超过了K条,不再符合题意,自己承包的边过少了,所以l = mid + 1;

#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 1000 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int N, P, K;
struct Edge{
int from, to, dist;
Edge(int f, int t, int d):from(f), to(t), dist(d){}
};
struct HeapNode{
int d, u;
HeapNode(int dd, int uu):d(dd), u(uu){}
bool operator < (const HeapNode& rhs)const{
return d > rhs.d;
}
};
struct Dijkstra{
int n, m;
vector<Edge> edges;
vector<int> G[MAXN];
bool done[MAXN];
int d[MAXN];
int p[MAXN];
void init(int n){
this -> n = n;
for(int i = 0; i < n; ++i) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int dist){
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
void dijkstra(int s, int t){
priority_queue<HeapNode> Q;
for(int i = 0; i < N; ++i) d[i] = INT_INF;
d[s] = 0;
memset(done, 0, sizeof done);
Q.push(HeapNode(0, s));
while(!Q.empty()){
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if(done[u]) continue;
done[u] = true;
for(int i = 0; i < G[u].size(); ++i){
Edge& e = edges[G[u][i]];
int tmp = e.dist > t ? 1 : 0;
if(d[e.to] > d[u] + tmp){
d[e.to] = d[u] + tmp;
p[e.to] = G[u][i];
Q.push(HeapNode(d[e.to], e.to));
}
}
}
}
}dij;
bool judge(int x){
dij.dijkstra(0, x);
if(dij.d[N - 1] <= K) return true;
return false;
}
int solve(){
int l = 0, r = 1e6;
while(l < r){
int mid = l + (r - l) / 2;
if(judge(mid)) r = mid;
else l = mid + 1;
}
if(judge(r)) return r;
return -1;
}
int main(){
dij.init(N);
scanf("%d%d%d", &N, &P, &K);
for(int i = 0; i < P; ++i){
int a, b, l;
scanf("%d%d%d", &a, &b, &l);
dij.AddEdge(a - 1, b - 1, l);
dij.AddEdge(b - 1, a - 1, l);
}
printf("%d\n", solve());
return 0;
}

  

POJ - 3662 Telephone Lines (dijstra+二分)的更多相关文章

  1. POJ 3662 Telephone Lines(二分答案+SPFA)

    [题目链接] http://poj.org/problem?id=3662 [题目大意] 给出点,给出两点之间连线的长度,有k次免费连线, 要求从起点连到终点,所用的费用为免费连线外的最长的长度. 求 ...

  2. POJ 3662 Telephone Lines (二分 + 最短路)

    Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncoop ...

  3. POJ - 3662 Telephone Lines (Dijkstra+二分)

    题意:一张带权无向图中,有K条边可以免费修建.现在要修建一条从点1到点N的路,费用是除掉免费的K条边外,权值最大的那条边的值,求最小花费. 分析:假设存在一个临界值X,小于X的边全部免费,那么此时由大 ...

  4. POJ 3662 Telephone Lines【二分答案+最短路】||【双端队列BFS】

    <题目链接> 题目大意: 在一个节点标号为1~n的无向图中,求出一条1~n的路径,使得路径上的第K+1条边的边权最小. 解题分析:直接考虑情况比较多,所以我们采用二分答案,先二分枚举第K+ ...

  5. (poj 3662) Telephone Lines 最短路+二分

    题目链接:http://poj.org/problem?id=3662 Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total ...

  6. POJ 3662 Telephone Lines【Dijkstra最短路+二分求解】

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7214   Accepted: 2638 D ...

  7. poj 3662 Telephone Lines(最短路+二分)

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6973   Accepted: 2554 D ...

  8. poj 3662 Telephone Lines spfa算法灵活运用

    意甲冠军: 到n节点无向图,它要求从一个线1至n路径.你可以让他们在k无条,的最大值.如今要求花费的最小值. 思路: 这道题能够首先想到二分枚举路径上的最大值,我认为用spfa更简洁一些.spfa的本 ...

  9. poj 3662 Telephone Lines

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7115   Accepted: 2603 D ...

  10. POJ 3662 Telephone Lines (分层图)

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6785   Accepted: 2498 D ...

随机推荐

  1. Java的SPI机制

    目录 1. 什么是SPI 2. 为什么要使用SPI 3. 关于策略模式和SPI的几点区别 4. 使用介绍或者说约定 4.1 首先介绍几个名词 4.2 约定 5. 具体的demo实现 5.1 创建服务提 ...

  2. swing开发图形界面工具配置(可自由拖控件上去)

    swing开发图形界面工具,eclipse swing图形化操作界面工具配置 1.有一个小功能要有一个界面,之前知道有一个 图形化界面的(就是可以往上面拖控件布局的工具)JBuilder,今天上午就下 ...

  3. 谈谈HashSet的存储原理及为什么重写equals必须重写hashcode方法

    HashSet的存储原理: 1.将要传入的数据根据系统的hash算法得到一个hash值: 2.根据hash值可以得出该数据在hash表中的位置: 3.判断该位置上是否有值,没有值则把数据插入进来:如果 ...

  4. [PHP] php作为websocket的客户端实时读取推送日志文件

    首先要使用composer来下载一个第三方扩展就可以实现php的websocket客户端,直接在当前目录生成下composer.json文件就可以了composer require textalk/w ...

  5. Java日志相关概述

    日志是代码调试.生产运维必备工具,基本所有软件都会有日志记录. 1.常用日志框架介绍 1.Logging jdk1.5自带日志工具类,位于java.util.logging; 2.Log4j 市场占有 ...

  6. 024、MySQL字符串替换函数,文本替换函数

    #文本替换 ,,'); #520ABCDEFG ,,'); #520BCDEFG ,,'); #520CDEFG ,,'); #A520BCDEFG ,,'); #A520CDEFG ,,'); #A ...

  7. 项目上线后,遇到IE浏览器不显示大部分组件的问题

    document.addEventListener('touchmove',(evt)=>{ }) 以上是ES6 语法,箭头函数,当然在IE下是不行的啦. 所以改为:ES5语法 document ...

  8. 吴裕雄--天生自然java开发常用类库学习笔记:大数操作

    import java.math.* ; class MyMath{ public static double add(double d1,double d2){ // 进行加法计算 BigDecim ...

  9. Docker-harbor-V1.3.0 ”私有仓库“搭建 Easy

    准备: centos     7.0 Docker version 1.12.6    docker-compose version 1.19.0   1: updata-yum:   更新yum 源 ...

  10. 虚拟 DOM 到底是什么?

    虚拟 DOM 到底是什么? 作者:wangshengliang 注意:由于文章太长,对文章有删减,但是不会影响整体阅读 是什么? 虚拟 DOM (Virtual DOM )这个概念相信大家都不陌生,从 ...