OpenCV 图像清晰度(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。
相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。
图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。
这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。
Tenengrad梯度方法
Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp> using namespace std;
using namespace cv; int main()
{
Mat imageSource = imread("2.jpg");
Mat imageGrey; cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat imageSobel;
Sobel(imageGrey, imageSobel, CV_16U, , ); //图像的平均灰度
double meanValue = 0.0;
meanValue = mean(imageSobel)[]; //double to string
stringstream meanValueStream;
string meanValueString;
meanValueStream << meanValue;
meanValueStream >> meanValueString;
meanValueString = "Articulation(Sobel Method): " + meanValueString;
putText(imageSource, meanValueString, Point(, ), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(, , ), );
imshow("Articulation", imageSource);
waitKey();
}
使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。


Laplacian梯度方法:
Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp> using namespace std;
using namespace cv; int main()
{
Mat imageSource = imread("1.jpg");
Mat imageGrey; cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat imageSobel; Laplacian(imageGrey, imageSobel, CV_16U);
//Sobel(imageGrey, imageSobel, CV_16U, 1, 1); //图像的平均灰度
double meanValue = 0.0;
meanValue = mean(imageSobel)[]; //double to string
stringstream meanValueStream;
string meanValueString;
meanValueStream << meanValue;
meanValueStream >> meanValueString;
meanValueString = "Articulation(Laplacian Method): " + meanValueString;
putText(imageSource, meanValueString, Point(, ), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(, , ), );
imshow("Articulation", imageSource);
waitKey();
}
用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:
方差方法:
方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。
对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好。
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp> using namespace std;
using namespace cv; int main()
{
Mat imageSource = imread("2.jpg");
Mat imageGrey; cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat meanValueImage;
Mat meanStdValueImage; //求灰度图像的标准差
meanStdDev(imageGrey, meanValueImage, meanStdValueImage);
double meanValue = 0.0;
meanValue = meanStdValueImage.at<double>(, ); //double to string
stringstream meanValueStream;
string meanValueString;
meanValueStream << meanValue*meanValue;
meanValueStream >> meanValueString;
meanValueString = "Articulation(Variance Method): " + meanValueString; putText(imageSource, meanValueString, Point(, ), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(, , ), );
imshow("Articulation", imageSource);
waitKey();
}
方差数值随着清晰度的降低逐渐降低:
在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。
OpenCV 图像清晰度(相机自动对焦)的更多相关文章
- OpenCV 图像清晰度评价(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上.这时候物体的成像比较清晰,图像细节信息丰富. 相 ...
- 相机自动对焦AF原理
相机自动对焦AF原理 AF性能是判断相机好坏的重要指标,主要从准确度和速度两个方面来进行考察,本文将介绍自动对焦的几种方式. 一.凸透镜成像原理 二.三种对焦方法 有公式在手,只要给相机安个测距仪就好 ...
- <学习opencv>图像和大型阵列类型
OPenCV /*=========================================================================*/ // 图像和大型阵列类型 /* ...
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的1 1.2. Remark: 1 1.3. 1.失焦检测. 衡量画面模糊的主要方 ...
- OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...
- 【OpenCV新手教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26157633 作者:毛星云(浅墨) ...
- Opencv 图像叠加 添加水印
Opencv 图像叠加 添加水印 C++: void Mat::copyTo(OutputArray m) const C++: void Mat::copyTo(OutputArray m, Inp ...
- opencv图像读取-imread
前言 图像的读取和保存一定要注意imread函数的各个参数及其意义,尽量不要使用默认参数,否则就像数据格式出现错误(here)一样,很难查找错误原因的: re: 1.opencv图像的读取与保存; 完
随机推荐
- Linux 目录变化监听 - python代码实现
在python中 文件监控主要有两个库, 一个是pyinotify ( https://github.com/seb-m/pyinotify/wiki ),pyinotify依赖于Linux平台的in ...
- opencv3。4安装出错
https://www.samontab.com/web/2017/06/installing-opencv-3-2-0-with-contrib-modules-in-ubuntu-16-04-lt ...
- pycharm 的 使用 设置智能目录 Pycharm 断点跳转及 Step Over/Step Into/Step Out 等的区别
pycharm 右键点击文件夹 有个mark directiory as 根据需要给目录进行设置 Pycharm调试程序时,有时需要直接从第一个断点跳转至第二个断点,如果还是用单步调试的话就非常 ...
- 抓DHCP客户端ip脚本
cat testnew.sh #!/bin/bash catch_ip (){Ip=`sudo nmap -sP 192.168.1.0/24 |grep -i -B2 $mac|grep Nmap ...
- Pmw大控件(二)
Pmw大控件英文名Pmw Python megawidgets 官方参考文档:Pmw 1.3 Python megawidgets 一,如何使用Pmw大控件 下面以创建一个计数器(Counter)为例 ...
- Coursera机器学习——Recommender System测验
第一题本应该是基础题,考察Cost Function不同形式的表示方法,但却难住了我,说明基本概念掌握不够到位. 1. 在求和的部分,有两种可能,一种是(i,j)同时求和,即∑(i,j):r(i,j) ...
- Linux-异步IO
1.何为异步IO (1).几乎可以这么认为:异步IO就是操作系统用软件实现的一套中断响应系统. (2).异步IO的工作方法:我们当前进程注册一个异步IO事件(使用signal注册一个信号SIGIO的处 ...
- OpenMP笔记(五)
任务调度主要用于并行的for循环中,当循环中每次迭代的计算量不相等时,如果简单地给各个线程分配相同次数的迭代的话,会造成各个线程计算负载不均衡,这会使得有些线程先执行完,有些后执行完,造成某些CPU核 ...
- Python笔记_第四篇_高阶编程_进程、线程、协程_5.GPU加速
Numba:高性能计算的高生产率 在这篇文章中,笔者将向你介绍一个来自Anaconda的Python编译器Numba,它可以在CUDA-capable GPU或多核cpu上编译Python代码.Pyt ...
- POJ - 1061 扩展欧几里德算法+求最小正整数解
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...