用图解法求解下列线性规划问题,并指出问题具有惟一最优解,无穷多最优解,无界解还是无可行解.

习题1.1(b):$\max z=3x_1+2x_2$
$$
s.t
\begin{cases}
  2x_1+x_2\leq 2\\
3x_1+4x_2\geq 12\\
x_1,x_2\geq 0\\
\end{cases}
$$

解答:把 $x_1$ 作为横坐标,$x_2$ 作为纵坐标.则根据题目中的限制条件做图如下:

由图易得问题无可行解.

习题1.1(c):$\max z=x_1+x_2$
$$s.t
\begin{cases}
  6x_1+10x_2\leq 120\\
5\leq x_1\leq 10\\
3\leq x_2\leq 8\\
\end{cases}
$$
解答:把 $x_1$ 作为横坐标,$x_2$ 作为纵坐标.则根据题目中的限制条件做图如下:

由图可见问题具有惟一最优解,且 $z$ 的最大值为16.

习题1.2(a):对下述线性规划问题找出所有基解,指出哪些是基可行解,并确定最优解.
$\max z=3x_1+x_2+2x_3$
$$
\begin{cases}
  12x_1+3x_2+6x_3+3x_4=9\\
8x_1+x_2-4x_3+2x_5=10\\
3x_1-x_6=0\\
x_j\geq 0(j=1,\cdots,6)\\
\end{cases}
$$
解答:先把限制条件化为标准的形式.易得可以化为
$$
\begin{cases}
  12x_1+3x_2+6x_3+3x_4+0\cdot x_5+0\cdot x_6=9\\
   8x_1+x_2-4x_3+0\cdot x_4+2x_5+0\cdot x_6=10\\
3x_1+0\cdot x_2+0\cdot x_3+0\cdot x_4+0\cdot x_5-x_6=0\\
x_j\geq 0(j=1,\cdots,6)\\
\end{cases}
$$
可得约束方程组的系数矩阵为
$$ A=\begin{bmatrix}
12&3&6&3&0&0\\
8&1&-4&0&2&0\\
3&0&0&0&0&-1\\
\end{bmatrix}
$$
该矩阵由6个列向量组成,记第 $i(1\leq i\leq 6)$ 个列向量为 $P_i$.矩阵 $A$ 的秩不大于3,所以只用找出3个列向量组成的矩阵满秩,这3个向量就是线性规划问题的一个基.令与基对应的变量为基变量,其余变量为非基变量,令非基变量等于0,求解方程组就可以找出基解(找基解的一个有效方法是计算行列式).该线性规划问题的基列如下:

  1. $\{P_1,P_2,P_3\}$
  2. $\{P_1,P_2,P_4\}$
  3. $\{P_1,P_2,P_5\}$
  4. $\{P_1,P_2,P_6\}$
  5. $\{P_1,P_3,P_4\}$
  6. $\{P_1,P_3,P_5\}$
  7. $\{P_1,P_3,P_6\}$
  8. $\{P_2,P_3,P_{4}\}$(这不是一组基).
  9. $\{P_2,P_3,P_5\}$(这不是一组基).
  10. $\{P_2,P_3,P_6\}$
  11. $\{P_3,P_4,P_5\}$(这不是一组基).
  12. $\{P_3,P_4,P_6\}$
  13. $\{P_2,P_4,P_5\}$(这不是一组基).
  14. $\{P_2,P_4,P_6\}$
  15. $\{P_1,P_4,P_5\}$
  16. $\{P_1,P_4,P_6\}$
  17. $\{P_4,P_5,P_6\}$
  18. $\{P_3,P_5,P_6\}$
  19. $\{P_2,P_5,P_6\}$
  20. $\{P_1,P_5,P_6\}$

可见,该线性规划问题的基共有16个.这些基对应的基解分别为

  1. $x_1=0,x_2=\frac{16}{3},x_3=\frac{-7}{6}$,其余皆为0.
  2. $x_1=0,x_2=10,x_4=-7$,其余皆为0.
  3. $x_1=0,x_2=3,x_5=\frac{7}{2}$,其余皆为0.
  4. $x_1=\frac{7}{4},x_2=-4,x_6=\frac{21}{4}$,其余皆为0.
  5. $x_{1}=0,x_3=\frac{-5}{2},x_4=8$,其余皆为0.
  6. $x_1=0,x_3=\frac{3}{2},x_5=8$,其余皆为0.
  7. $x_1=1,x_3=\frac{-1}{2},x_6=3$,其余皆为0.
  8. $x_2=\frac{16}{3},x_3=\frac{-7}{6},x_6=0$,其余皆为0.
  9. $x_3=\frac{-5}{2},x_4=8,x_6=0$,其余皆为0.
  10. $x_{2}=10,x_4=-7,x_6=0$,其余皆为0.
  11. $x_1=0,x_4=-1,x_5=5$,其余皆为0.
  12. $x_1=\frac{5}{4},x_4=-2,x_6=\frac{15}{4}$,其余皆为0.
  13. $x_4=3,x_5=5,x_6=0$,其余皆为0.
  14. $x_3=\frac{3}{2},x_5=8,x_6=0$,其余皆为0.
  15. $x_2=3,x_5=\frac{7}{2},x_6=0$,其余皆为0.
  16. $x_1=\frac{3}{4},x_5=2,x_6=\frac{9}{4}$,其余皆为0.

在这些解中,基可行解易得为

  1. $x_1=0,x_2=3,x_5=\frac{7}{2}$,其余皆为0.
  2. $x_1=0,x_3=\frac{3}{2},x_5=8$,其余皆为0.
  3. $x_4=3,x_5=5,x_6=0$,其余皆为0.
  4. $x_3=\frac{3}{2},x_5=8,x_6=0$,其余皆为0.
  5. $x_2=3,x_5=\frac{7}{2},x_6=0$,其余皆为0.
  6. $x_1=\frac{3}{4},x_5=2,x_6=\frac{9}{4}$,其余皆为0.

在这些基可行解中,容易验证最优解有4个,为

  1. $x_1=0,x_2=3,x_5=\frac{7}{2}$,其余皆为0.
  2. $x_1=0,x_3=\frac{3}{2},x_5=8$,其余皆为0.
  3. $x_3=\frac{3}{2},x_5=8,x_6=0$,其余皆为0.
  4. $x_2=3,x_5=\frac{7}{2},x_6=0$,其余皆为0.

可得 $z$ 的最大值为3.

《运筹学基础及应用》习题1.1(b),1.1(c),1.2(a)的更多相关文章

  1. 《运筹学基础及应用》习题1.3(b)

    习题1.3(b):分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解分别对应图解法中可行域的哪一顶点.$\max z=2x_1+x_2$,$$s.t.\begin{cases ...

  2. 零基础学python习题 - Python必须知道的基础语法

    1. 以下变量命名不正确的是(D) A. foo = the_value B. foo = l_value C. foo = _value D. foo = value_& 2. 计算2的38 ...

  3. 零基础学python习题 - 进入python的世界

    1. python拥有以下特性:面向对象的特性.动态性.内置的数据结构.简单性.健壮性.跨平台性.可扩展性.强类型语言.应用广泛 2. python 需要  编译 3. 以下不属于python内置数据 ...

  4. Linux网站运维工程师基础大纲

    第一阶段:Linux运维基础 第一章:Linux基础以及入门介绍 1.Linux硬件基础 2.Linux发展过程 3.创建虚拟机和系统安装 第二章:Linux系统目录结构介绍 1.Linux系统优化 ...

  5. 跟阿铭学Linux习题答案

    第一章:走进Linux 1.简述它的发展历史,列举几种代表性的发行版 Linux之前是Unix,由于Unix收费昂贵,so,Richard Stallman 发起了开发自由软件的运动,并成立了自由软件 ...

  6. Python老王视频习题答案

    基础篇2:一切变量都是数据对象的引用sys.getrefcount('test') 查看引用计数变量命名不能以数字开头编码:ascii.unicode.utf-81.阅读str对象的help文档,并解 ...

  7. 7月份计划-----dream

    梦想还是要有的,万一实现了呢? 数学 150[total] 专业课 150[total] 英语 100[total] 政治 100[total] 第一轮复习计划开始执行 1.专业课: 通过课件把所有的 ...

  8. 电脑小白学习软件开发-C#语言基础之循环重点讲解,习题

    写代码也要读书,爱全栈,更爱生活.每日更新原创IT编程技术及日常实用视频. 我们的目标是:玩得转服务器Web开发,搞得懂移动端,电脑客户端更是不在话下. 本教程是基础教程,适合任何有志于学习软件开发的 ...

  9. 快学Scala习题解答—第一章 基础

    1 简介 近期对Scala比较感兴趣,买了本<快学Scala>,感觉不错.比<Programming Scala:Tackle Multi-Core Complexity on th ...

随机推荐

  1. HTML与CSS结合的四种方式

    HTML与CSS结合的四种方式: 方式一:每个标签加一个属性: 例如:<div style="background-color:red; color: green"> ...

  2. BZOJ [Scoi2010]游戏

    题解: 解法一:建立图论模型,发现只要联通块中有环则这个联通块中的值都可以被攻击到 如果是树,则只能攻击size-1个 解法二:二分图匹配,二分答案,看看是否能攻击到mid #include<i ...

  3. 解决: java.io.IOException: 打开的文件过多 的问题

    问题 前一阵子公司项目做了一次压力测试, 中间出现了一个问题: 在50多个并发的时候会出现 java.io.IOException: 打开的文件过多 这个异常. 但是在没有并发的时候是不会出现这个问题 ...

  4. 一维消消乐(DP)

    一维消消乐是一款非常简单的游戏.有n颗珠子排成一排,每一颗珠子有一个价值w(可能是负数). 游戏是这样,你可以选择如若干对相邻的珠子,让他们同时消去.每一对珠子的消失,都会使得总分数加上两颗珠子相乘的 ...

  5. rsync搭建

    服务器: 查看是否安装:rpm -qa rsync 未安装则:yum install -y rsync 添加rsync用户 useradd -s /sbin/nologin -M rsync 编辑/e ...

  6. 网页时不时打不开?试试阿里DNS 233.5.5.5 /233.6..6.6

    最经上网都是用手机热点,但发现用谷歌浏览器时,时不时打不开网页.最后发现是DNS的问题,原来我的dns是8.8.8.8. 最后更改成阿里的DNS 233.5.5.5 /233.6..6.6,打开网页流 ...

  7. 第37章 socket编程 之练习:实现简单的web服务器

    一.参考网址 1.linux C学习之实现简单的web服务器 2.C语言实现简单Web服务器(一)

  8. Python基础学习二

    Python基础学习二 1.编码 utf-8编码:自动将英文保存为1个字符,中文3个字符.ASCll编码被囊括在内. unicode:将所有字符保存为2给字符,容纳了世界上所有的编码. 2.字符串内置 ...

  9. Spring Cloud Alibaba 教程 | Nacos(一)

    什么是Nacos Nacos是一个更易于构建云原生应用的动态服务发现.配置管理和服务管理平台. Nacos 致力于帮助您发现.配置和管理微服务.Nacos提供了一组简单易用的特性集,帮助您快速实现动态 ...

  10. delphi实现FTP上传与下载

    unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...