松下问童子,言师采药去。

只在此山中,云深不知处。——贾岛

题目:魔板 Magic Squares

网址:https://www.luogu.com.cn/problem/P2730

这是一张有8个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。

对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。

这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A: 8 7 6 5

1 2 3 4

B: 4 1 2 3

5 8 7 6

C: 1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入格式

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

输入样例
2 6 8 4 5 7 3 1
输出样例
7
BCABCCB
说明

选自USACO Training Section 3.2

做完八数码问题,不难理解这道题可以使用广搜解决(毕竟时间复杂度与八数码问题类似)。

像之前的八数码问题一样,我们把状态定义成一个八位数,代码中简单的使用STL中map和set进行记录与判重。

留意:本题有一个陷肼,如果使用从上到下、从左向右进行加和操作确定状态时,初状态应为:12348765!

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#include<set>
using namespace std;
const int rot[4] = {2, 1, 5, 6};
int st = 12348765, ed = 0, s[10];
map <int, int> d, f;
set <int> vis;
void decode(int state, int *p)
{
for(int i = 7; i >= 0; -- i)
{
p[i] = state % 10;
state /= 10;
}
//将十进制编码转化为数组
return;
}
int encode(int *p)
{
int cnt = 0;
for(int i = 0; i < 8; ++ i)
{
cnt = (cnt << 1) + (cnt << 3) + p[i];
}
//将数组转化为十进制8位编码
return cnt;
}
void flip(int cur, int *p)
{
switch(cur)
{
case 0 :
{
for(int i = 0; i < 4; ++ i)
{
swap(p[i], p[i + 4]);
}
break;
}
case 1 :
{
for(int i = 2; i > -1; -- i)
{
swap(p[i], p[i + 1]);
swap(p[i + 4], p[i + 5]);
}
break;
}
case 2 :
{
for(int i = 0; i < 3; ++ i)
{
swap(p[rot[i]], p[rot[i + 1]]);
}
break;
}
}
return;
}
void print_ans(int state)
{
if(state == st) return;
int prev_state = 0;
decode(state, s);
switch(f[state])
{
case 0:
{
for(int i = 0; i < 4; ++ i)
{
swap(s[i], s[i + 4]);
}
break;
}
case 1:
{
for(int i = 0; i < 3; ++ i)
{
swap(s[i], s[i + 1]);
swap(s[i + 4], s[i + 5]);
}
break;
}
case 2:
{
for(int i = 2; i >= 0; -- i)
{
swap(s[rot[i + 1]], s[rot[i]]);
}
break;
}
}
for(int i = 0; i < 8; ++ i)
{
prev_state = prev_state * 10 + s[i];
}
memset(s, 0, sizeof(s));
print_ans(prev_state);
printf("%c", f[state] + 'A');
return;
}
void bfs()
{
//特判 初始状态 和 目标状态 相同
if(st == ed) {
puts("0");
return;
} f.clear(), vis.clear();
queue <int> Q;
while(!Q.empty()) Q.pop(); Q.push(st);
vis.insert(st);
int copy[8] = {}, now, next; while(!Q.empty())
{
now = Q.front();
Q.pop();
decode(now, s);
memcpy(copy, s, sizeof(copy));
for(int i = 0; i < 3; ++ i)
{
flip(i, s);
next = encode(s);
memcpy(s, copy, sizeof(s)); if(vis.count(next)) continue;
d[next] = d[now] + 1;
f[next] = i;
if(next == ed)
{
printf("%d\n", d[next]);
print_ans(next);
return;
}
Q.push(next);
vis.insert(next);
}
}
return;
}
int main()
{
memset(s, 0, sizeof(s));
for(int i = 0; i < 4; ++ i) scanf("%d", &s[i]);
//目标状态处理:
for(int i = 7; i >= 4; -- i) scanf("%d", &s[i]);
//留意陷阱呢
for(int i = 0; i < 8; ++ i)
{
ed = (ed << 1) + (ed << 3) + s[i];
}
bfs();
return 0;
}

[USACO3.2]魔板 Magic Squares的更多相关文章

  1. 「一本通 1.4 例 2」[USACO3.2]魔板 Magic Squares

    [USACO3.2]魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题 ...

  2. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  3. 哈希+Bfs【P2730】 魔板 Magic Squares

    没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...

  4. 【简●解】 LG P2730 【魔板 Magic Squares】

    LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...

  5. 洛谷 P2730 魔板 Magic Squares

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  6. [洛谷P2730] 魔板 Magic Squares

    洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...

  7. 魔板 Magic Squares(广搜,状态转化)

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

  8. P2730 魔板 Magic Squares

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

  9. 洛谷P2730 [IOI]魔板 Magic Squares

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

随机推荐

  1. Codeforces 631 (Div. 2) E. Drazil Likes Heap 贪心

    https://codeforces.com/contest/1330/problem/E 有一个高度为h的大顶堆:有2h -1个不同的正整数,下标从1到2h−1,1<i<2h, a[i] ...

  2. 使用jdbc实现简单的mvc模式的增删改查

    Mvc模式设计: 视图:添加界面(addUser.jsp),修改界面(updateUser.jsp),显示页面(allUser.jsp) 控制器:添加信息控制器(AddUserServlet),修改信 ...

  3. Mac下Web切图常用PS快捷命令

    Mac下 Z 放大镜 双击放大镜   图片会回到100%大小 C 切片工具 B 画笔    alt 在B模式下 吸取颜色 M   选区(默认) 点击第二次M   矩形选区 可以固定大小 shift+c ...

  4. Linux网络安全篇,进入SELinux的世界(三)

    SELinux防火墙配套的服务 一.auditd 1.基本功能 将详细信息写入到 /var/log/audit/audit.log文件 2.设置开机自动启动 chkconfig --list audi ...

  5. Flask 入门 (十一)

    上篇文章讲的是一对多,这篇文章应该说多对多了 但是多对多无法用两张表来实现,因为外键......,你懂,哈哈哈!,所以中间需要加一张表来实现 承接上文,修改main.py中的代码如下: #encodi ...

  6. JavaScript 入门 (一)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. flask 入门 之 Python Shell (一)

    1.安装插件: pip install flask_script 2.代码: #encoding:utf-8 from flask_sqlalchemy import SQLAlchemy from ...

  8. Vue-CLI 3.x 部署项目至生产服务器

    本文已同步到专业技术网站 www.sufaith.com, 该网站专注于前后端开发技术与经验分享, 包含Web开发.Nodejs.Python.Linux.IT资讯等板块. 本教程主要讲解的是 Vue ...

  9. 小猪佩奇C代码实现

    // ASCII Peppa Pig by Milo Yip #include <stdio.h> #include <math.h> #include <stdlib. ...

  10. 数据结构和算法(Golang实现)(18)排序算法-前言

    排序算法 人类的发展中,我们学会了计数,比如知道小明今天打猎的兔子的数量是多少.另外一方面,我们也需要判断,今天哪个人打猎打得多,我们需要比较. 所以,排序这个很自然的需求就出来了.比如小明打了5只兔 ...