@description@

Fib数列为1,1,2,3,5,8...

求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置

无解输出-1

原题传送门。

@solution@

一个熟练的 OIer 选手应该能迅速发现 5 在模 10^9 + 9 意义下有二次剩余。考虑斐波那契通项公式:

\[f_i = \frac{1}{\sqrt{5}}((\frac{1 + \sqrt{5}}{2})^n - (\frac{1 - \sqrt{5}}{2})^n) = N
\]

不妨记 \(a = \frac{1 + \sqrt{5}}{2}, b = \frac{1 - \sqrt{5}}{2}\),则我们要解方程 \(a^n - b^n = \sqrt{5}N = K\)。

这个方程可解吗?注意 a, b 存在关系:\(a + b = 1, ab = -1\)。前一个显然不好用,我们用后一个:

\[a^n - (\frac{-1}{a})^n = K\\
a^{2n} - Ka^{n} - (-1)^n = 0\\
a^n = \frac{K \pm \sqrt{K^2 + 4\times(-1)^n}}{2}
\]

讨论一下 n 的奇偶可以解出 \(a^n\),然后 BSGS 即可。平方根也可 BSGS + 原根来解。

@accepted code@

#include <cstdio>
#include <vector>
#include <cassert>
#include <iostream>
#include <algorithm>
using namespace std; const int MOD = int(1E9) + 9;
const int INV2 = (MOD + 1) / 2;
const int INV5 = (MOD + 1) / 5;
const int SQ5 = 383008016;
const int A = 1LL*(MOD + 1 + SQ5)*INV2%MOD;
const int B = 1LL*(MOD + 1 - SQ5)*INV2%MOD;
const int C = 1LL*SQ5*INV5%MOD;
const int G = 13;
const int BLOCK = 32000;
const int HASHSIZE = 1000037;
const int MA = 133086171;
const int INVMA = 74832817;
const int GCD = 3; inline int add(int x, int y) {return (x + y >= MOD ? x + y - MOD : x + y);}
inline int sub(int x, int y) {return (x - y < 0 ? x - y + MOD : x - y);}
inline int mul(int x, int y) {return 1LL * x * y % MOD;} int pow_mod(int b, int p) {
int ret = 1;
for(int i=p;i;i>>=1,b=mul(b,b))
if( i & 1 ) ret = mul(ret, b);
return ret;
}
int fib(int n) {
int x = sub(pow_mod(A, n), pow_mod(B, n));
return mul(C, x);
} vector<pair<int, int> >h[HASHSIZE];
int hash_search(int x) {
int y = x % HASHSIZE;
for(int i=0;i<h[y].size();i++)
if( h[y][i].first == x )
return h[y][i].second;
return -1;
}
void hash_insert(int x, int k) {
int y = x % HASHSIZE;
for(int i=0;i<h[y].size();i++)
if( h[y][i].first == x )
return ;
h[y].push_back(make_pair(x, k));
}
void init() {
int p = pow_mod(G, BLOCK);
for(int i=1,q=p;i<=BLOCK;i++,q=mul(q,p))
hash_insert(q, i*BLOCK);
}
int bsgs(int x) {
if( x == 0 ) return -1;
int ret = MOD;
for(int i=1,q=G;i<=BLOCK;i++,q=mul(q,G)) {
int p = hash_search(mul(x, q));
if( p != -1 ) ret = min(ret, p - i);
}
assert(pow_mod(G, ret) == x);
return ret;
}
int msqrt(int x) {
if( x == 0 ) return 0;
int p = bsgs(x);
return p % 2 ? -1 : pow_mod(G, p / 2);
} int ans = -1;
void update(int x, int r) {
x = 1LL*(x / GCD)*INVMA%((MOD - 1) / GCD);
if( x % 2 == r )
if( ans == -1 || ans > x )
ans = x;
}
int main() {
int N, K; scanf("%d", &N), K = mul(N, SQ5), init(); int P = msqrt(add(mul(K, K), 4)); // even
if( P != -1 ) {
int k = bsgs(mul(add(K, P), INV2));
if( k != -1 && k % GCD == 0 ) update(k, 0);
k = bsgs(mul(sub(K, P), INV2));
if( k != -1 && k % GCD == 0 ) update(k, 0);
} P = msqrt(sub(mul(K, K), 4)); // odd
if( P != -1 ) {
int k = bsgs(mul(add(K, P), INV2));
if( k != -1 && k % GCD == 0 ) update(k, 1);
k = bsgs(mul(sub(K, P), INV2));
if( k != -1 && k % GCD == 0 ) update(k, 1);
} if( ans != -1 ) assert(fib(ans) == N);
printf("%d\n", ans);
}

@details@

因为几乎都是常数,可以预处理出来直接用。

话说这道题的主要难点是解方程那一块吧,感觉数学味儿多一点。

@bzoj - 5104@ Fib数列的更多相关文章

  1. BZOJ 5104 Fib数列(二次剩余+BSGS)

    斐波那契数列的通项: \[\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})-(\frac{1-\sqrt{5}}{2}))\] 设T=\(\sqrt{5}*N\),\ ...

  2. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

  3. FIB数列

    斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...

  4. bzoj5104: Fib数列

    Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...

  5. 动态规划之Fib数列类问题应用

    一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...

  6. UVaLive 3357 Pinary (Fib数列+递归)

    题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...

  7. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

  8. HDU3977 Evil teacher 求fib数列模p的最小循环节

    In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...

  9. 1022. Fib数列

    https://acm.sjtu.edu.cn/OnlineJudge/problem/1022 Description 定义Fib数列:1,1,2,3,5,8,13,…1,1,2,3,5,8,13, ...

随机推荐

  1. 基于腾讯云搭建squid代理服务器

    本文主要介绍下在腾讯云上搭建squid代理服务器,用于访问国外网站或者为爬虫提供代理ip,以及简单介绍下如何基于腾讯云提供的SDK,批量开启或者销毁代理服务器实例. Squid是一个高性能的代理缓存服 ...

  2. 解决2003 - 2003 - Can't connect to MySQL server on '127.0.0.1'(61 "Connection refused")

    1)右击数据库选择编辑连接2) 3)重新输入密码即可

  3. docker的镜像加速

    docker加速配置 1,阿里云镜像加速 1.登录:https://dev.aliyun.com/search.html 2.登录阿里云 搜索   容器镜像服务  找到后如下图 ‘ 您可以通过修改da ...

  4. 0511Object类和异常

    Object类和异常 [要点] toString方法:将类中要打印的信息转换为自定义格式的打印内容 [返回的是当前对象对应的完整包名.类名@当前对象在内存空间首地址(十六进制)] equals方法 p ...

  5. Java中的集合(十一) 实现Map接口的TreeMap

    Java中的集合(十一) 实现Map接口的TreeMap 一.TreeMap简介(基于JDK1.8) TreeMap是基于红黑树数据结构,是一个key-value的有序集合,该映射根据其键的自然顺序进 ...

  6. JavaScript ——内部函数和匿名函数

    在JS中,函数是一种数据类型,可以将它赋值给变量,因此函数可以这样创建: var func=function(){ alert("func"); } func(); 既然函数是一种 ...

  7. 如何在Spring Boot应用启动之后立刻执行一段逻辑

    1. 前言 不知道你有没有接到这种需求,项目启动后立马执行一些逻辑.比如简单的缓存预热,或者上线后的广播之类等等.如果你使用 Spring Boot 框架的话就可以借助其提供的接口CommandLin ...

  8. Java实现 LeetCode 21 合并两个有序链表

    21. 合并两个有序链表 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1->2->4, 1->3->4 输出:1 ...

  9. java中eclipse控制台接受输入的方法

    如果是超大字符串的话,相比较来说用io流比较快捷 import java.io.BufferedReader; import java.io.IOException; import java.io.I ...

  10. Java实现选择排序和冒泡排序

    1 问题描述 给定一个可排序的n元素序列(例如,数字.字符和字符串),将它们按照非降序方式重新排列. 2 解决方案 2.1 选择排序原理简介 选择排序开始的时候,我们从第一个元素开始扫描整个列表,找到 ...