【pytorch】改造resnet为全卷积神经网络以适应不同大小的输入
为什么resnet的输入是一定的?
因为resnet最后有一个全连接层。正是因为这个全连接层导致了输入的图像的大小必须是固定的。
输入为固定的大小有什么局限性?
原始的resnet在imagenet数据集上都会将图像缩放成224×224的大小,但这么做会有一些局限性:
(1)当目标对象占据图像中的位置很小时,对图像进行缩放将导致图像中的对象进一步缩小,图像可能不会正确被分类
(2)当图像不是正方形或对象不位于图像的中心处,缩放将导致图像变形
(3)如果使用滑动窗口法去寻找目标对象,这种操作是昂贵的
如何修改resnet使其适应不同大小的输入?
(1)自定义一个自己网络类,但是需要继承models.ResNet
(2)将自适应平均池化替换成普通的平均池化
(3)将全连接层替换成卷积层
相关代码:
import torch
import torch.nn as nn
from torchvision import models
import torchvision.transforms as transforms
from torch.hub import load_state_dict_from_url from PIL import Image
import cv2
import numpy as np
from matplotlib import pyplot as plt class FullyConvolutionalResnet18(models.ResNet):
def __init__(self, num_classes=1000, pretrained=False, **kwargs): # Start with standard resnet18 defined here
super().__init__(block = models.resnet.BasicBlock, layers = [2, 2, 2, 2], num_classes = num_classes, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url( models.resnet.model_urls["resnet18"], progress=True)
self.load_state_dict(state_dict) # Replace AdaptiveAvgPool2d with standard AvgPool2d
self.avgpool = nn.AvgPool2d((7, 7)) # Convert the original fc layer to a convolutional layer.
self.last_conv = torch.nn.Conv2d( in_channels = self.fc.in_features, out_channels = num_classes, kernel_size = 1)
self.last_conv.weight.data.copy_( self.fc.weight.data.view ( *self.fc.weight.data.shape, 1, 1))
self.last_conv.bias.data.copy_ (self.fc.bias.data) # Reimplementing forward pass.
def _forward_impl(self, x):
# Standard forward for resnet18
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x) x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x) # Notice, there is no forward pass
# through the original fully connected layer.
# Instead, we forward pass through the last conv layer
x = self.last_conv(x)
return x
需要注意的是我们将全连接层的参数拷贝到自己定义的卷积层中去了。
看一下网络结构,主要是关注网络的最后:

我们将self.avgpool替换成了AvgPool2d,而全连接层虽然还在网络中,但是在前向传播时我们并没有用到 。
现在我们有这么一张图像:

图像大小为:(387, 1024, 3)。而且目标对象骆驼是位于图像的右下角的。
我们就以这张图片看一下是怎么使用的。
with open('imagenet_classes.txt') as f:
labels = [line.strip() for line in f.readlines()]
# Read image
original_image = cv2.imread('camel.jpg')# Convert original image to RGB format
image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
# Transform input image
# 1. Convert to Tensor
# 2. Subtract mean
# 3. Divide by standard deviation
transform = transforms.Compose([
transforms.ToTensor(), #Convert image to tensor.
transforms.Normalize(
mean=[0.485, 0.456, 0.406], # Subtract mean
std=[0.229, 0.224, 0.225] # Divide by standard deviation
)])
image = transform(image)
image = image.unsqueeze(0)
# Load modified resnet18 model with pretrained ImageNet weights
model = fcresnet18.FullyConvolutionalResnet18(pretrained=True).eval()
print(model)
with torch.no_grad():
# Perform inference.
# Instead of a 1x1000 vector, we will get a
# 1x1000xnxm output ( i.e. a probabibility map
# of size n x m for each 1000 class,
# where n and m depend on the size of the image.)
preds = model(image)
preds = torch.softmax(preds, dim=1)
print('Response map shape : ', preds.shape)
# Find the class with the maximum score in the n x m output map
pred, class_idx = torch.max(preds, dim=1)
print(class_idx)
row_max, row_idx = torch.max(pred, dim=1)
col_max, col_idx = torch.max(row_max, dim=1)
predicted_class = class_idx[0, row_idx[0, col_idx], col_idx]
# Print top predicted class
print('Predicted Class : ', labels[predicted_class], predicted_class)
说明:imagenet_classes.txt中是标签信息。在数据增强时,并没有将图像重新调整大小。用opencv读取的图片的格式为BGR,我们需要将其转换为pytorch的格式:RGB。同时需要使用unsqueeze(0)增加一个维度,变成[batchsize,channel,height,width]。看一下avgpool和last_conv的输出的维度:
我们使用torchsummary库来进行每一层输出的查看:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
from torchsummary import summary
summary(model, (3, 387, 1024))
结果:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 194, 512] 9,408
BatchNorm2d-2 [-1, 64, 194, 512] 128
ReLU-3 [-1, 64, 194, 512] 0
MaxPool2d-4 [-1, 64, 97, 256] 0
Conv2d-5 [-1, 64, 97, 256] 36,864
BatchNorm2d-6 [-1, 64, 97, 256] 128
ReLU-7 [-1, 64, 97, 256] 0
Conv2d-8 [-1, 64, 97, 256] 36,864
BatchNorm2d-9 [-1, 64, 97, 256] 128
ReLU-10 [-1, 64, 97, 256] 0
BasicBlock-11 [-1, 64, 97, 256] 0
Conv2d-12 [-1, 64, 97, 256] 36,864
BatchNorm2d-13 [-1, 64, 97, 256] 128
ReLU-14 [-1, 64, 97, 256] 0
Conv2d-15 [-1, 64, 97, 256] 36,864
BatchNorm2d-16 [-1, 64, 97, 256] 128
ReLU-17 [-1, 64, 97, 256] 0
BasicBlock-18 [-1, 64, 97, 256] 0
Conv2d-19 [-1, 128, 49, 128] 73,728
BatchNorm2d-20 [-1, 128, 49, 128] 256
ReLU-21 [-1, 128, 49, 128] 0
Conv2d-22 [-1, 128, 49, 128] 147,456
BatchNorm2d-23 [-1, 128, 49, 128] 256
Conv2d-24 [-1, 128, 49, 128] 8,192
BatchNorm2d-25 [-1, 128, 49, 128] 256
ReLU-26 [-1, 128, 49, 128] 0
BasicBlock-27 [-1, 128, 49, 128] 0
Conv2d-28 [-1, 128, 49, 128] 147,456
BatchNorm2d-29 [-1, 128, 49, 128] 256
ReLU-30 [-1, 128, 49, 128] 0
Conv2d-31 [-1, 128, 49, 128] 147,456
BatchNorm2d-32 [-1, 128, 49, 128] 256
ReLU-33 [-1, 128, 49, 128] 0
BasicBlock-34 [-1, 128, 49, 128] 0
Conv2d-35 [-1, 256, 25, 64] 294,912
BatchNorm2d-36 [-1, 256, 25, 64] 512
ReLU-37 [-1, 256, 25, 64] 0
Conv2d-38 [-1, 256, 25, 64] 589,824
BatchNorm2d-39 [-1, 256, 25, 64] 512
Conv2d-40 [-1, 256, 25, 64] 32,768
BatchNorm2d-41 [-1, 256, 25, 64] 512
ReLU-42 [-1, 256, 25, 64] 0
BasicBlock-43 [-1, 256, 25, 64] 0
Conv2d-44 [-1, 256, 25, 64] 589,824
BatchNorm2d-45 [-1, 256, 25, 64] 512
ReLU-46 [-1, 256, 25, 64] 0
Conv2d-47 [-1, 256, 25, 64] 589,824
BatchNorm2d-48 [-1, 256, 25, 64] 512
ReLU-49 [-1, 256, 25, 64] 0
BasicBlock-50 [-1, 256, 25, 64] 0
Conv2d-51 [-1, 512, 13, 32] 1,179,648
BatchNorm2d-52 [-1, 512, 13, 32] 1,024
ReLU-53 [-1, 512, 13, 32] 0
Conv2d-54 [-1, 512, 13, 32] 2,359,296
BatchNorm2d-55 [-1, 512, 13, 32] 1,024
Conv2d-56 [-1, 512, 13, 32] 131,072
BatchNorm2d-57 [-1, 512, 13, 32] 1,024
ReLU-58 [-1, 512, 13, 32] 0
BasicBlock-59 [-1, 512, 13, 32] 0
Conv2d-60 [-1, 512, 13, 32] 2,359,296
BatchNorm2d-61 [-1, 512, 13, 32] 1,024
ReLU-62 [-1, 512, 13, 32] 0
Conv2d-63 [-1, 512, 13, 32] 2,359,296
BatchNorm2d-64 [-1, 512, 13, 32] 1,024
ReLU-65 [-1, 512, 13, 32] 0
BasicBlock-66 [-1, 512, 13, 32] 0
AvgPool2d-67 [-1, 512, 1, 4] 0
Conv2d-68 [-1, 1000, 1, 4] 513,000
================================================================
Total params: 11,689,512
Trainable params: 11,689,512
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 4.54
Forward/backward pass size (MB): 501.42
Params size (MB): 44.59
Estimated Total Size (MB): 550.55
----------------------------------------------------------------
最后是看一下预测的结果:
Response map shape : torch.Size([1, 1000, 1, 4])
tensor([[[978, 980, 970, 354]]])
Predicted Class : Arabian camel, dromedary, Camelus dromedarius tensor([354])
与imagenet_classes.txt中对应(索引下标是从0开始的)

可视化关注点:
from google.colab.patches import cv2_imshow
# Find the n x m score map for the predicted class
score_map = preds[0, predicted_class, :, :].cpu().numpy()
score_map = score_map[0] # Resize score map to the original image size
score_map = cv2.resize(score_map, (original_image.shape[1], original_image.shape[0])) # Binarize score map
_, score_map_for_contours = cv2.threshold(score_map, 0.25, 1, type=cv2.THRESH_BINARY)
score_map_for_contours = score_map_for_contours.astype(np.uint8).copy() # Find the countour of the binary blob
contours, _ = cv2.findContours(score_map_for_contours, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE) # Find bounding box around the object.
rect = cv2.boundingRect(contours[0])
# Apply score map as a mask to original image
score_map = score_map - np.min(score_map[:])
score_map = score_map / np.max(score_map[:])
score_map = cv2.cvtColor(score_map, cv2.COLOR_GRAY2BGR)
masked_image = (original_image * score_map).astype(np.uint8) # Display bounding box
cv2.rectangle(masked_image, rect[:2], (rect[0] + rect[2], rect[1] + rect[3]), (0, 0, 255), 2) # Display images
#cv2.imshow("Original Image", original_image)
#cv2.imshow("activations_and_bbox", masked_image)
cv2_imshow(original_image)
cv2_imshow(masked_image)
cv2.waitKey(0)
在谷歌colab中ipynb要使用:from google.colab.patches import cv2_imshow

参考:https://www.learnopencv.com/cnn-receptive-field-computation-using-backprop/?ck_subscriber_id=503149816
【pytorch】改造resnet为全卷积神经网络以适应不同大小的输入的更多相关文章
- 全卷积神经网络FCN详解(附带Tensorflow详解代码实现)
一.导论 在图像语义分割领域,困扰了计算机科学家很多年的一个问题则是我们如何才能将我们感兴趣的对象和不感兴趣的对象分别分割开来呢?比如我们有一只小猫的图片,怎样才能够通过计算机自己对图像进行识别达到将 ...
- 全卷积神经网络FCN
卷积神经网络CNN(YannLecun,1998年)通过构建多层的卷积层自动提取图像上的特征,一般来说,排在前边较浅的卷积层采用较小的感知域,可以学习到图像的一些局部的特征(如纹理特征),排在后边较深 ...
- 全卷积神经网络FCN理解
论文地址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 这篇论文使用全卷积神经网络来做语义上的图像分割,开创了这一领 ...
- pytorch实战(7)-----卷积神经网络
一.卷积: 卷积在 pytorch 中有两种方式: [实际使用中基本都使用 nn.Conv2d() 这种形式] 一种是 torch.nn.Conv2d(), 一种是 torch.nn.function ...
- Pytorch修改ResNet模型全连接层进行直接训练
之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把 最后一层的输出改一下,不需要加载前面层 ...
- 基于区域的全卷积神经网络(R-FCN)简介
在 Faster R-CNN 中,检测器使用了多个全连接层进行预测.如果有 2000 个 ROI,那么成本非常高. feature_maps = process(image)ROIs = region ...
- 卷积神经网络概念及使用 PyTorch 简单实现
卷积神经网络 卷积神经网络(CNN)是深度学习的代表算法之一 .具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络”.随着深度学习理论的提出和数值计算设备 ...
- 手写数字识别 卷积神经网络 Pytorch框架实现
MNIST 手写数字识别 卷积神经网络 Pytorch框架 谨此纪念刚入门的我在卷积神经网络上面的摸爬滚打 说明 下面代码是使用pytorch来实现的LeNet,可以正常运行测试,自己添加了一些注释, ...
- PyTorch基础——使用卷积神经网络识别手写数字
一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的 ...
随机推荐
- Shell之Here Document
EOF本意是 End Of File,表明到了文件末尾. 使用格式基本是这样的: 命令 << EOF 内容段EOF将“内容段”整个作为命令的输入.你的代码里就是用cat命令读入整段字符串并 ...
- C++扬帆远航——15(项目二,太乐了)
/* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:tailezhanshi.cpp * 作者:常轩 * 微信公众号 ...
- ZOJ 4109 Welcome Party
题目链接:(https://zoj.pintia.cn/problem-sets/91827364500/problems/91827370504)(https://vjudge.net/proble ...
- 编写简单i18n库
i18n是什么?i18n(其来源是英文单词internationalization的首末字符i和n,18为中间的字符数)是"国际化"的简称. 前言 第一次接触多语言是用野生java ...
- audioContext.decodeAudioData 返回null 错误
此问题并不是100%出现.没想到国外大神已经有处理此问题的经验 原贴地址: https://stackoverflow.com/questions/10365335/decodeaudiodata-r ...
- 从0到1使用MyBatis
MyBatis作为最流行的数据中间层,成为企业Java软件开发中非常重要的软件. 一.基本配置 1.首先需要导入Maven <dependency> <groupId>org. ...
- 数据加密标准(DES)详解
1 简介 1.1 历史 DES(Data Encryption Standard)是由IBM公司在1974年提出的加密算法,在1977年被NIST定位数据加密标准.随后的很多年里,DES都是最流行的对 ...
- Java Opencv 实现锐化
§ Laplacian() void cv::Laplacian ( InputArray src, O ...
- 优化一、js
1.防抖和节流 2.深拷贝和浅拷贝
- 2019-2020-2 20175226 王鹏雲 网络对抗技术 Exp2 后门原理与实践
2019-2020-2 20175226 王鹏雲 网络对抗技术 Exp2 后门原理与实践 实验内容 使用netcat获取主机操作Shell,cron启动: 使用socat获取主机操作Shell, 任务 ...