文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)
文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)
期刊名:Journal of Proteome Research
发表时间:(2020年3月)
IF:3.78
单位:
- 滑铁卢大学计算机科学学院
- 多伦多细胞生物学和SPARC生物项目中心
- 多伦多大学分子遗传学系
技术:肽段鉴定,诱饵数据库构建
一、 概述:
该研究开发了一种基于de Bruijn图形模型的诱饵数据库构建算法。这种算法构建的诱饵数据库在保证随机性的同时,在很大程度上保留了目标数据库中的序列结构的重复性。而将de Bruijn策略与其他常见诱饵库构建策略进行对比得到的结果表明,在0.01这一较高的错误发生率(FDR)水平上该方法能鉴定到更多的肽段。
二、 研究背景:
在基于质谱的蛋白质组学研究中,数据库搜索方法是最常用的肽段鉴定方法。其原理首先利用蛋白质序列,通过酶切法将其转化为肽,建立理论肽段序列数据库;接着通过将实际谱图与理论数据库中的肽段序列相匹配来实现肽段鉴定。
数据库搜索方法需要一个合理的方法来评估结果的FDR,而目标诱饵(target-decoy)方法是最常见的一种。该方法使用由目标蛋白序列和人工生成的诱饵序列组成的串联序列数据库与MS/MS谱匹配。理想情况下,谱图匹配到诱饵和目标序列的概率分布是相同的。因此,诱饵匹配数成为目标数据库中错误匹配数的估计,FDR则是通过诱饵匹配数与报告的目标匹配数之间的比率来估计的。
因此合理地构建诱饵库就是目标诱饵方法的核心问题,使用de Bruijn方法构建诱饵库可以避免常用的反库或随机库等诱饵库所产生的缺陷。
三、实验设计:
四、研究成果:
1、目标库与不同方法生成的诱饵库中肽段总数与肽段种类数目。可以看出在目标库中大约有一半的数目是重复肽段。因此random shuffling与normalized shuffling生成的诱饵库包含的肽段种类更多,这最终会导致FDR的偏高。而其他四种方法利用一定的规则生成诱饵序列,避免或减少了这一问题。
2、不同诱饵库在1%FDR下的肽段谱图匹配数。Normalized Shuffling方法的FDR是在乘以0.519的标准化因子后计算的。从图中可以看出使用de brujin诱饵库得到的肽段数量最多。这个现象可以从以下几个角度解释:
对于Random Shuffling,Normalized Shuffling与TPP方法而言,性能较差的原因是诱饵数据库中肽段的种类比目标库要多。由于诱饵肽种类的增加,质谱谱图与更多的诱饵肽进行了匹配评分,这可能导致一些分数处在阈值上的真正该被匹配到的目标肽被随机产生的诱饵肽所淘汰。这对正确识别目标肽有不利的影响。
而对于Reversal与shifted Reversal方法,性能较差的原因可能是目标肽和诱饵肽及其谱图的碎片离子之间存在高度的相关性。
3、de brujin的原理实例图:(a) 两个目标库蛋白序列的示例。(b) 对应的k=2的de-Bruijn图。每个目标序列对应于图中的一条路径。第一个序列、第二个序列和两个序列共享的边分别为蓝色、橙色和黑色。(c) 边缘标签随机替换为其他氨基酸。(d) 诱饵蛋白序列是通过在重标记图中跟踪两个目标蛋白的路径获得的。
简而言之,氨基酸在替换时会考虑以此氨基酸为起始的k个氨基酸所组成的序列,相同的序列会将此氨基酸替换为同一个随机氨基酸,从而达到保护序列重复性的效果。
五、文章亮点(结论讨论):针对生成用于数据库搜库方法FDR估计的诱饵库,本文提出了一种数学上严格且易于实现的方法de brujin,能够在保留蛋白质重复结构的同时生成带有随机性的诱饵序列。此方法避免了简单的随机方法不保留目标数据库中的重复片段与Reversal方法使目标诱饵库之间相似性过高的问题,且从数据与原理两个角度说明了de Bruijn方法的良好性能。
阅读人:刘佳维
文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)的更多相关文章
- False Discovery Rate, a intuitive explanation
[转载请注明出处]http://www.cnblogs.com/mashiqi Today let's talk about a intuitive explanation of Benjamini- ...
- MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性
一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...
- The database could not be exclusively locked to perform the operation(SQL Server 5030错误解决办法)(转)
Microsoft SQL Server 5030错误解决办法 今天在使用SQL Server时,由于之前创建数据库忘记了设置Collocation,数据库中插入中文字符都是乱码,于是到DataBas ...
- 假设用一个名为text的字符串向量存放文本文件的数据,其中的元素或者是一句话或者是一个用于表示段分隔的空字符串。将text中第一段全改为大写形式
#include<iostream> #include<string> #include<vector> using namespace std; int main ...
- Python scikit-learn机器学习工具包学习笔记
feature_selection模块 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标 ...
- Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity
读paper的时候觉得自己就是个24K纯学渣(=.=)一大堆问题等着我去解决...所以在这里写一个Q&A好了,先列问题,逐步填充答案- ××××××××××××××××××我是分割线么么哒×× ...
- Python scikit-learn机器学习工具包学习笔记:feature_selection模块
sklearn.feature_selection模块的作用是feature selection,而不是feature extraction. Univariate feature selecti ...
- Python —— sklearn.feature_selection模块
Python —— sklearn.feature_selection模块 sklearn.feature_selection模块的作用是feature selection,而不是feature ex ...
- Multi-batch TMT reveals false positives, batch effects and missing values(解读人:胡丹丹)
文献名:Multi-batch TMT reveals false positives, batch effects and missing values (多批次TMT定量方法中对假阳性率,批次效应 ...
随机推荐
- C2C的道德边界:沦为从假运单到假病条的供假渠道
你可能刚开始学会不去看网购平台上商品回评中的虚假好评,却又要开始应对同事在朋友圈等平台买来的虚开病假条带来的困扰.最近各大媒体包括党报热传的网购病假条事件,再度将人们的目光集中在这个C2C模式之上.从 ...
- 游LeetCode一月之闲谈
今年的2月比往常更长,不是因为比往年多了一天,而是被病毒隔离在家的日子显得十分漫长.如果再不给自己找点事情做的话,且不论身体方面的健康状况,精神方面可能也会有些隐忧.做为一名工程师,适时地读上几本平日 ...
- 下一代网际协议IPv6
下一代网际协议IPv6 一.解决 IP 地址耗尽的措施 从计算机本身发展以及从因特网规模和网络传输速率来看,现在 IPv4 已很不适用. 最主要的问题就是 32 位的 IP 地址不够用. 在 2019 ...
- Maven使用和配置
Maven使用和配置 一.maven安装和概念 maven安装 maven编译(compile) 执行测试用例(test) maven打包(package) maven依赖管理 1.maven安装 官 ...
- Node REPL环境
1.概述 REPL全称Read,Eval,Print,Loop,简单理解为接收用户输入,执行用户输入,打印执行结果并输出到控制台,进行下一次轮回,可以进行一些简单的测试,类似于浏览器的控制台. 命令行 ...
- pyteeseract使用报错Error: one input ui-file must be specified解决
Python在图像识别有天然的优势,今天使用pytesseract模块时遇到一个报错:“Error: one input ui-file must be specified”. 环境:windows ...
- FreeSql 插入数据,如何返回自增值
FreeSql是一个功能强大的 .NET ORM 功能库,支持 .NetFramework 4.0+..NetCore 2.1+.Xamarin 等支持 NetStandard 所有运行平台. 以 M ...
- python-面向对象小结
面向对象 小结 1:面向对象:就是一种编程思想 简称oop,指挥某某完成能完成的功能 2:面向对象与面向过程的优缺点 : 面向过程: 优点: 复杂问题简答化(一步一步解决), 流程化, 缺点:机械化 ...
- 06 Linux 的常用命令
Linux 刚面世时并没有图形界面,所有的操作全靠命令完成,如 磁盘操作.文件存取.目录操作.进程管理.文件权限 设定等 在职场中,大量的 服务器维护工作 都是在 远程 通过 SSH 客户端 来完成的 ...
- vue基础----修饰符,watch,computed,method实例方法
1.vue常用的修饰符,number,trim,number--->当作数字,trim-->去掉前后空格 2.methods与计算属性 computed 的相同与区别 <body&g ...