E - Apple Tree POJ - 2486
E - Apple Tree POJ - 2486
Input
Each test case contains three parts.
The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1<=N<=100, 0<=K<=200)
The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i.
The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent.
Input will be ended by the end of file.
Note: Wshxzt starts at Node 1.
Output
Sample Input
2 1
0 11
1 2
3 2
0 1 2
1 2
1 3
Sample Output
11
2
题意:给你一棵以1为根节点的树,树上的每个节点有arr[i]苹果,从1出发最多能走k步,问最多能得到多少个苹果。
题解:一开始没有思考到能还能走回来的的情况,就以为是一道广搜就可以了,然后听别人说才知道是一个树形dp
起点已经确定为1,那么取得最大值仅有两种情况,一种是走了k步之后,回到1了,另一种是走了k步,终点没回到1,停在某一个子节点上。
那么对于每一个节点的最大值都可以这样认为,每个节点的最大值都是走K步,回到起点/不回到起点。
定义三位数组dp[i][j][k] , i 为起点 , j 为走的步数 , k = 0 表示不回到起点 ,k = 1 表示回到起点。
每个父亲节点的值,都可以由他的子节点来更新
对于状态转移方程
dp[i][j][1] = max(dp[i][j][1] , dp[i][j - m][1] + dp[v][m - 2][1]);
最终都要返回起点i,dp[v][m - 2][1] 代表从i的其中一个子节点v传递上拉来的走 m - 2步的获取苹果的最大值,之所以是m-2步,因为 i 和 v 之间的往返消耗了两步
dp[i][j][0] = max(dp[i][j][0] , max(dp[i][j - m][1] + dp[v][m - 2][0] , dp[i][j - m][0] + dp[v][m - 2][1]));
最终不返回起点i ,其终点有可能停留在子节点v所在的子树中,也有可能从v节点的子树中返回,停留在另一个子树中。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<vector>
#include<queue>
#define ios ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid + 1,r
#define P pair<ll,ll>
#define ull unsigned long long
using namespace std;
typedef long long ll;
const int maxn = 1e5 + ;
const ll mod = 1e9 + ;
const int inf = 0x3f3f3f3f;
const long long INF = 0x3f3f3f3f3f3f3f3f;
int k, n, T, m, t;
vector<int>edge[];
int arr[];
int dp[][][]; // 三维 1 表示返回出发点 , 0 表示不返回出发点
void dfs(int u, int start)
{
for (int i = ; i < edge[u].size(); ++i)
{
int v = edge[u][i];
if (v == start) continue;
dfs(v, u);
for (int j = k; j >= ; --j)
{
for (int m = ; m <= j; ++m)
{
if(m == )
dp[u][j][] = max(dp[u][j][], dp[u][j - m][] + dp[v][m - ][]);
//从起点u出发走j步,不返回u的最大值,
else
{
dp[u][j][] = max(dp[u][j][], max(dp[u][j - m][] + dp[v][m - ][] , dp[u][j - m][] + dp[v][m - ][]));
dp[u][j][] = max(dp[u][j][], dp[u][j - m][] + dp[v][m - ][]);
}
}
} }
} int main()
{
while (scanf("%d %d", &n, &k) != EOF)
{
for (int i = ; i <= n; ++i)
edge[i].clear();
mem(dp, );
mem(arr, );
for (int i = ; i <= n; ++i)
scanf("%d", &arr[i]);
for (int i = ; i <= n; ++i)
for (int j = ; j <= k; ++j)
dp[i][j][] = dp[i][j][] = arr[i];
for (int i = ; i < n; ++i)
{
int u, v;
scanf("%d %d", &u, &v);
edge[u].push_back(v);
edge[v].push_back(u);
}
dfs(, -);//建立一个根节点
printf("%d\n", max(dp[][k][], dp[][k][])); }
return ;
}
AC代码
一个从很久以前就开始做的梦。
E - Apple Tree POJ - 2486的更多相关文章
- Apple Tree POJ - 2486
Apple Tree POJ - 2486 题目大意:一棵点带权有根树,根节点为1.从根节点出发,走k步,求能收集的最大权值和. 树形dp.复杂度可能是O(玄学),不会超过$O(nk^2)$.(反正这 ...
- Apple Tree POJ - 2486 (树形dp)
题目链接: D - 树形dp POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...
- Apple Tree POJ - 3321 dfs序列构造树状数组(好题)
There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...
- 【POJ 2486】 Apple Tree (树形DP)
Apple Tree Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to a ...
- 【POJ 2486】 Apple Tree(树型dp)
[POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8981 Acce ...
- POJ 2486 Apple Tree
好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...
- poj 2486 Apple Tree(树形DP 状态方程有点难想)
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9808 Accepted: 3260 Descri ...
- poj 2408 Apple Tree
http://poj.org/problem?id=2486 典型的回溯题目:特别是状态方程用三维的来标记是否要走回路. 题意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走 ...
- POJ - 3321 Apple Tree (线段树 + 建树 + 思维转换)
id=10486" target="_blank" style="color:blue; text-decoration:none">POJ - ...
随机推荐
- flower——知识总结
创建主外键关联的话,外键表的外键字段一定要与主键表的主键字段相一致,包括字段类型,字段长度,字段符号等等 inverse="true" 将控制权交给对方,在一对多的关系中,一端控制 ...
- 前端学习(22)~css问题讲解
你是如何理解 HTML 语义化的? 语义化:指对文本内容的结构化(内容语义化),选择合乎语义的标签(代码语义化). 举例:段落用 p,边栏用 aside,主要内容用 main 标签. 好处: 便于开发 ...
- EditText标签的使用
前文: 介绍EditText的使用,这个是文本输入控件,用来输入文本内容 使用: EditText继承TextView所以TextView的东西EditText都可以使用 text:显示文本 text ...
- Mac 配置代码高亮 Git状态显示
Mac 一个为开发者量身定做的笔记本,分享给大家希望能帮助大家配置一个好的开发环境,好的开发环境才有好的心情Code. 首先进入到Home到目录一般默认打开的都是Home,如果不是输入 cd ~ 回车 ...
- SSM文件上传要点总结
文件的上传要点: 1.表单方面:enctype="multitype/form-data" 编码方式选择混编码 input 类型采用file 2.实体类一定要进行序列化,也就是im ...
- django 中从外界借助多个网站时 static 的存放和整理
在 模板之家中 前端页面直接上去抓取 可是遇到重复 或者 版本不统一 所以 在每个app下面建立自己的 stastic 在制作的html 页面上方 导入静态页面 {% load static ...
- 070-PHP数组相加
<?php $arr1=array('a','b','c'); //定义一个数组 echo '数组$arr1的信息:<br />'; print_r($arr1); //输出数组信息 ...
- HDU_4965 Fast Matrix Calculation 2014多校9 矩阵快速幂+机智的矩阵结合律
一开始看这个题目以为是个裸的矩阵快速幂的题目, 后来发现会超时,超就超在 M = C^(N*N). 这个操作,而C本身是个N*N的矩阵,N最大为1000. 但是这里有个巧妙的地方就是 C的来源其实 ...
- 第十篇 Form表单
Form表单 阅读目录(Content) Form介绍 普通的登录 使用form组件 Form那些事儿 常用字段演示 校验 使用Django Form流程 补充进阶 应用Bootstrap样式 批量添 ...
- Docker 搭建开源跳板机_jumpserver (运维开源堡垒机_jumpserver) Centos_7.0
最近看到一个开源项目(jumpserver) 很不错 还是用Docker 部署得 ... 抽了点时间拿来学习一下 部署 分析 简单使用一下 ....好了先搭起来 准备 工作: ...