E - Apple Tree POJ - 2486
E - Apple Tree POJ - 2486
Input
Each test case contains three parts.
The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1<=N<=100, 0<=K<=200)
The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i.
The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent.
Input will be ended by the end of file.
Note: Wshxzt starts at Node 1.
Output
Sample Input
2 1
0 11
1 2
3 2
0 1 2
1 2
1 3
Sample Output
11
2
题意:给你一棵以1为根节点的树,树上的每个节点有arr[i]苹果,从1出发最多能走k步,问最多能得到多少个苹果。
题解:一开始没有思考到能还能走回来的的情况,就以为是一道广搜就可以了,然后听别人说才知道是一个树形dp
起点已经确定为1,那么取得最大值仅有两种情况,一种是走了k步之后,回到1了,另一种是走了k步,终点没回到1,停在某一个子节点上。
那么对于每一个节点的最大值都可以这样认为,每个节点的最大值都是走K步,回到起点/不回到起点。
定义三位数组dp[i][j][k] , i 为起点 , j 为走的步数 , k = 0 表示不回到起点 ,k = 1 表示回到起点。
每个父亲节点的值,都可以由他的子节点来更新
对于状态转移方程
dp[i][j][1] = max(dp[i][j][1] , dp[i][j - m][1] + dp[v][m - 2][1]);
最终都要返回起点i,dp[v][m - 2][1] 代表从i的其中一个子节点v传递上拉来的走 m - 2步的获取苹果的最大值,之所以是m-2步,因为 i 和 v 之间的往返消耗了两步
dp[i][j][0] = max(dp[i][j][0] , max(dp[i][j - m][1] + dp[v][m - 2][0] , dp[i][j - m][0] + dp[v][m - 2][1]));
最终不返回起点i ,其终点有可能停留在子节点v所在的子树中,也有可能从v节点的子树中返回,停留在另一个子树中。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<vector>
#include<queue>
#define ios ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid + 1,r
#define P pair<ll,ll>
#define ull unsigned long long
using namespace std;
typedef long long ll;
const int maxn = 1e5 + ;
const ll mod = 1e9 + ;
const int inf = 0x3f3f3f3f;
const long long INF = 0x3f3f3f3f3f3f3f3f;
int k, n, T, m, t;
vector<int>edge[];
int arr[];
int dp[][][]; // 三维 1 表示返回出发点 , 0 表示不返回出发点
void dfs(int u, int start)
{
for (int i = ; i < edge[u].size(); ++i)
{
int v = edge[u][i];
if (v == start) continue;
dfs(v, u);
for (int j = k; j >= ; --j)
{
for (int m = ; m <= j; ++m)
{
if(m == )
dp[u][j][] = max(dp[u][j][], dp[u][j - m][] + dp[v][m - ][]);
//从起点u出发走j步,不返回u的最大值,
else
{
dp[u][j][] = max(dp[u][j][], max(dp[u][j - m][] + dp[v][m - ][] , dp[u][j - m][] + dp[v][m - ][]));
dp[u][j][] = max(dp[u][j][], dp[u][j - m][] + dp[v][m - ][]);
}
}
} }
} int main()
{
while (scanf("%d %d", &n, &k) != EOF)
{
for (int i = ; i <= n; ++i)
edge[i].clear();
mem(dp, );
mem(arr, );
for (int i = ; i <= n; ++i)
scanf("%d", &arr[i]);
for (int i = ; i <= n; ++i)
for (int j = ; j <= k; ++j)
dp[i][j][] = dp[i][j][] = arr[i];
for (int i = ; i < n; ++i)
{
int u, v;
scanf("%d %d", &u, &v);
edge[u].push_back(v);
edge[v].push_back(u);
}
dfs(, -);//建立一个根节点
printf("%d\n", max(dp[][k][], dp[][k][])); }
return ;
}
AC代码
一个从很久以前就开始做的梦。
E - Apple Tree POJ - 2486的更多相关文章
- Apple Tree POJ - 2486
Apple Tree POJ - 2486 题目大意:一棵点带权有根树,根节点为1.从根节点出发,走k步,求能收集的最大权值和. 树形dp.复杂度可能是O(玄学),不会超过$O(nk^2)$.(反正这 ...
- Apple Tree POJ - 2486 (树形dp)
题目链接: D - 树形dp POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...
- Apple Tree POJ - 3321 dfs序列构造树状数组(好题)
There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...
- 【POJ 2486】 Apple Tree (树形DP)
Apple Tree Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to a ...
- 【POJ 2486】 Apple Tree(树型dp)
[POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8981 Acce ...
- POJ 2486 Apple Tree
好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...
- poj 2486 Apple Tree(树形DP 状态方程有点难想)
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9808 Accepted: 3260 Descri ...
- poj 2408 Apple Tree
http://poj.org/problem?id=2486 典型的回溯题目:特别是状态方程用三维的来标记是否要走回路. 题意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走 ...
- POJ - 3321 Apple Tree (线段树 + 建树 + 思维转换)
id=10486" target="_blank" style="color:blue; text-decoration:none">POJ - ...
随机推荐
- delphi保存和提取ini文件信息
procedure TLoginForm.FormShow(Sender: TObject);var ini:TIniFile; name:string;begin //实现动态提取数据库的登录用户名 ...
- Python 日志模块详解
前言 我们知道查看日志是开发人员日常获取信息.排查异常.发现问题的最好途径,日志记录中通常会标记有异常产生的原因.发生时间.具体错误行数等信息,这极大的节省了我们的排查时间,无形中提高了编码效率.所以 ...
- Django(一)基础:安装环境、创建项目、视图、创建一个项目的应用(app)
一.安装环境 参考: https://docs.djangoproject.com/zh-hans https://www.runoob.com/django/django-install.html ...
- Redis数据类型及其操作
redis数据类型即操作 1. 字符串 set 设置字符串 格式: set key value 例子: set name kainhuck get 获取字符串的值 格式: get key 例子: ge ...
- Spring Boot2(005):关于代码结构
spring boot 对于工程代码结构并没有特殊得要求,但以下几个有用的最佳实践建议参考参考: 1.不鼓励而且应该避免使用 default 包 没有 package 声明的类被认为是在 defaul ...
- Python基础笔记:函数:调用函数、定义函数、函数的参数、递归函数
一.定义一个求二元一次方程的根的函数 #Sublime Text import math def ee(a,b,c): delta=b*b-4*a*c if delta<0: return 'n ...
- 143-PHP printf函数
<?php $num=123.456; //定义一个浮点数变量 printf('以整数形式输出:%d',$num); //格式化为有符号十进制整数后输出 ?> <?php $num= ...
- 【转】AutoMapper对象映射
什么是AutoMapper?AutoMapper是一个简单的小型库,用于解决一个看似复杂的问题 - 摆脱将一个对象映射到另一个对象的代码.这种类型的代码是相当沉闷和无聊的写,所以为什么不发明一个工具来 ...
- DataTable数据类型的一些操作 增加行、插入行、修改数据、修改列名、修改列顺序、计算、选取或删除行(列)、排序、某列distinct值 等
Datatable 这个数据类型在C#中涉及到对数据库读取时的用处还是挺大的,最近在处理一个报表开发时,一开始把所有的操作都放在sql 上面来做,就是我需要什么样的数据我就query出什么,但是这样其 ...
- oracle中判断"非"
在oracle中判断为"非"最常见的两种情况,一个是"不等于",一个的"非空". 通过查找资料得知,oracle中判断不等于的方法有好多种: ...