小白学 Python 数据分析(17):Matplotlib(二)基础操作

人生苦短,我用 Python
前文传送门:
小白学 Python 数据分析(2):Pandas (一)概述
小白学 Python 数据分析(3):Pandas (二)数据结构 Series
小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame
小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择
小白学 Python 数据分析(7):Pandas (六)数据导入
小白学 Python 数据分析(8):Pandas (七)数据预处理
小白学 Python 数据分析(9):Pandas (八)数据预处理(2)
小白学 Python 数据分析(10):Pandas (九)数据运算
小白学 Python 数据分析(11):Pandas (十)数据分组
小白学 Python 数据分析(12):Pandas (十一)数据透视表(pivot_table)
小白学 Python 数据分析(13):Pandas (十二)数据表拼接
小白学 Python 数据分析(14):Pandas (十三)数据导出
小白学 Python 数据分析(16):Matplotlib(一)坐标系
坐标轴标题设置
各位同学好,我又来了,本文给大家带来的是有关 Matplotlib 的一些基础操作。

在前一篇文章中,我们介绍了如何使用 Matplotlib 绘制坐标系,本文我们接着介绍 Matplotlib 。
先看一个简单的示例:
import matplotlib.pyplot as plt
x_data = ['2011','2012','2013','2014','2015','2016','2017']
y_data = [58000,60200,63000,71000,84000,90500,107000]
plt.xlabel('年份')
plt.ylabel('销量')
plt.plot(x_data, y_data)
plt.show()
结果如下:

好像哪里不太对的样子,横轴和数轴的标题没有显示出来,看一下程序运行,没有报错,但是报出来一个警告:
RuntimeWarning: Glyph 24180 missing from current font.
这个警告的含义是 plt 画图是找不到字体,那么这里我们手动设置一下字体:
plt.rcParams['font.sans-serif']=['SimHei']
完整的样例代码如下:
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
x_data = ['2011','2012','2013','2014','2015','2016','2017']
y_data = [58000,60200,63000,71000,84000,90500,107000]
plt.xlabel('年份')
plt.ylabel('销量')
plt.plot(x_data, y_data)
plt.show()
结果如下:

这下显示正常了。
我们还可以通过参数 labelpad 设置标题到坐标轴的距离,这里为了演示效果设置的距离稍微大了点:
plt.xlabel('年份', labelpad=50)
plt.ylabel('销量', labelpad=50)
结果如下:

我们还可以通过参数对文本的相关属性进行设置,下面看下一些常用的设置参数:
plt.xlabel('年份', labelpad=50, fontsize='xx-large', fontweight='bold', rotation='vertical', backgroundcolor='red')
plt.ylabel('销量', labelpad=50)
先看结果:

xlabel 中常用的一些参数:
- fontsize : 设置字体大小,默认12,可选参数 ['xx-small', 'x-small', 'small', 'medium', 'large','x-large', 'xx-large']
- fontweight : 设置字体粗细,可选参数 ['light', 'normal', 'medium', 'semibold', 'bold', 'heavy', 'black']
- fontstyle : 设置字体类型,可选参数[ 'normal' | 'italic' | 'oblique' ],italic斜体,oblique倾斜
- verticalalignment : 设置水平对齐方式 ,可选参数 : 'center' , 'top' , 'bottom' ,'baseline'
- horizontalalignment : 设置垂直对齐方式,可选参数:left,right,center
- rotation : (旋转角度)可选参数为:vertical,horizontal 也可以为数字
- alpha : 透明度,参数值0至1之间
- backgroundcolor : 标题背景颜色
- bbox : 给标题增加外框 ,常用参数如下:
- boxstyle 方框外形
- facecolor (简写fc)背景颜色
- edgecolor (简写ec)边框线条颜色
- edgewidth 边框线条大小
刻度设置
默认坐标轴是显示 x y 的值,但是也可以自定义显示不同的刻度,这里需要使用到的函数为 xticks 和 yticks 两个函数:
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
x_data = [2011,2012,2013,2014,2015,2016,2017]
y_data = [58000,60200,63000,71000,84000,90500,107000]
plt.xticks(x_data, ['2011年','2012年','2013年','2014年','2015年','2016年','2017年'])
plt.yticks(y_data)
plt.plot(x_data, y_data)
plt.show()
结果如下:

有些时候,由于数据脱敏的需要,我们不要显示刻度,还可以这么写:
plt.xticks(x_data, [])
plt.yticks(y_data, [])
这样展现出来的图形如下:

实际上,我们还有更狠的操作,直接关闭坐标轴:
plt.axis("off")
结果如下:

范围设置
我们还可以对坐标轴的范围进行设置,如下:
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
x_data = [2011,2012,2013,2014,2015,2016,2017]
y_data = [58000,60200,63000,71000,84000,90500,107000]
plt.xlim(2011, 2020)
plt.ylim(50000, 90000)
plt.plot(x_data, y_data)
plt.show()
结果如下:

这里设置在 Y 轴上最大值为 90000 ,那么 2016 和 2017 对应的数据将会无法显示,实际我们从得出的结果图上也能看出这一点。
网格线设置
网格线默认是关闭的,我们可以通过函数 grid 修改参数 b 来开启网格线,如下:
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
x_data = [2011,2012,2013,2014,2015,2016,2017]
y_data = [58000,60200,63000,71000,84000,90500,107000]
plt.plot(x_data, y_data)
plt.grid(b=True)
plt.show()
结果如下:

我们不仅可开启网格线,还可以通过参数 axis 来控制是开启哪个轴的网格线:
# 开启 x 轴网格线
plt.grid(b=True, axis='x')
# 开启 y 轴网格线
plt.grid(b=True, axis='y')
图例设置
图例能对图表起到注释的作用,我们可以通过参数 label 对该图表的图例进行设置,示例如下:
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
x_data = [2011,2012,2013,2014,2015,2016,2017]
y_data = [58000,60200,63000,71000,84000,90500,107000]
plt.plot(x_data, y_data, label = '折线图')
plt.bar(x_data, y_data, label = '柱状图')
plt.legend()
plt.show()
结果如下:

图表标题设置
图表标题是用来概括整张图表现的内容的,我们可以通过如下方式设置一张图的标题:
plt.title(label='xxx 公司 xxx 产品销量')
结果如下:

本文的内容就到这里了,下一篇我们介绍 Matplotlib 的常用图表的示例,本文的示例代码写的有点乱,就不贴出来了,当然,如果经常看小编写的文章的估计都找得到。

参考
https://blog.csdn.net/The_Time_Runner/article/details/89927708
小白学 Python 数据分析(17):Matplotlib(二)基础操作的更多相关文章
- 小白学 Python(17):基础数据类型(函数)(下)
人生苦短,我选Python 前文传送门 小白学 Python(1):开篇 小白学 Python(2):基础数据类型(上) 小白学 Python(3):基础数据类型(下) 小白学 Python(4):变 ...
- 小白学 Python(18):基础文件操作
人生苦短,我选Python 前文传送门 小白学 Python(1):开篇 小白学 Python(2):基础数据类型(上) 小白学 Python(3):基础数据类型(下) 小白学 Python(4):变 ...
- 小白学 Python(19):基础异常处理
人生苦短,我选Python 前文传送门 小白学 Python(1):开篇 小白学 Python(2):基础数据类型(上) 小白学 Python(3):基础数据类型(下) 小白学 Python(4):变 ...
- 小白学 Python 数据分析(18):Matplotlib(三)常用图表(上)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(16):Matplotlib(一)坐标系
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(13):Pandas (十二)数据表拼接
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
随机推荐
- 微软Hyperlapse技术:让第一人称摄像稳定而流畅
编者按:GoPro等第一人称摄像设备已经几乎成为了极限运动者的标配,但拍摄过程中的抖动常会让画面非常糟糕.微软Hyperlapse技术实现了将第一人称录像转化成稳定而流畅的视频.该成果的论文已发表在S ...
- 关于后端下载后端返回的blob类型文件的下载
关于后端返回blob类型的文件下载记录,在请求的时候前端设置响应类型 responseType: 'blob', const blob = new Blob([r], {type: r.type}); ...
- Pycharm 2019 破解激活方法
转载:https://blog.csdn.net/guofang110/article/details/87793264 使用破解补丁方法虽然麻烦,但是可用激活到2099年,基本上是永久激活了,毕竟在 ...
- CF-1110C-Meaningless Operations
题意: 输入q,然后输入q个a,对于每个a,找到一个b,使gcd(a ^ b, a & b)最大,输出这个最大的gcd: 思路: 用k表示a二进制最高位的二进制编号,1,2,4,8对应1,2, ...
- 将tomcat注册成windows系统服务方法
注册服务 打开cmd,进入到[部署tomcat的根目录]Tomcat7.0.65_1/bin,输入 service.bat install 服务名 修改服务名称 比如我注册的 service.ba ...
- vue-cli 项目结构介绍
感谢:https://www.jianshu.com/p/7006a663fb9f 总体框架 一个vue-cli的项目结构如下,其中src文件夹是需要掌握的,所以本文也重点讲解其中的文件,至于其他相关 ...
- Tuning xgboost in R:Part 1
第一次调整Boosting算法的参数可能是一个非常艰难的任务.有很多参数可供选择,调整不同的参数会有不同的结果产生.最好的调参可能是取决于数据.每当我得到一个新的数据集,我都会学到一些新的东西.对分类 ...
- 云服务器——之Linux下安装nginx
第一步:下载 Nginx,下载地址:http://nginx.org/download/nginx-1.6.2.tar.gz 第二步:安装nginx需要安装的一些环境: 1.例如: yum insta ...
- python入门机器学习,3行代码搞定线性回归
本文着重是重新梳理一下线性回归的概念,至于几行代码实现,那个不重要,概念明确了,代码自然水到渠成. “机器学习”对于普通大众来说可能会比较陌生,但是“人工智能”这个词简直是太火了,即便是风云变化的股市 ...
- CPU踩点图
CPU占比探测用js来检查当前系统cpu的占用比例,通过 setTimeout 的方式探测 CPU 的大小,这样可以实现网页游戏中动画等耗时操作的自动调节.这个原理是很多人都知道的,就是用JS来踩点. ...