数学--数论--Miller_Rabin判断素数
ACM常用模板合集
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7;
const int times = 10;
ll fast_mod(ll a,ll b,ll mod)//计算2^q的过程
{
ll res = 0;
while(b){
if(b & 1) res = res + a;
a <<= 1;
if(a >= mod) a -= mod;
if(res >= mod) res -= mod;
b >>= 1;
}
return res;
}
ll fast_pow_mod(ll a,ll b,ll mod)//快速幂算出a^m
{
ll res = 1;
while(b){
if(b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return res;
}
bool check(ll a,ll m,ll p,ll n)//对于每次随机的a进行测试
{
ll temp = fast_pow_mod(a,m,n),ret = temp;
for(int i = 0;i < p;++i){
ret = fast_mod(temp,temp,n);
if(ret == 1 && temp != n - 1 && temp != 1) return true;
temp = ret;
}
return ret != 1;
}
bool Miller_Pabin(ll n)//Miller测试的主体结构
{
if(n < 2) return false;
if(n == 2) return true;
if(n & 1 == 0) return false;//对于偶数的优化
ll p = 0,x = n - 1;//p为Miller测试的q,x为Miller测试的m
while(x & 1 == 0){
x >>= 1;
p++;
}
srand(time(NULL));
for(int i = 0;i < times;++i){
ll o = rand() % (n - 1) + 1;//o就是Miller测试的底数a
if(check(o,x,p,n)) return false;
}
return true;
}
int main()
{
ios::sync_with_stdio(false);
int t;
cin >> t;
while(t--){
long long n;
cin >> n;
cout << (Miller_Pabin(n) ? "Prime" : "Not a Prime") << endl;
}
return 0;
}
数学--数论--Miller_Rabin判断素数的更多相关文章
- 数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)
前提知识 1,费马定理:ap−1=1(mod p)a^{p-1}=1(mod\ p)ap−1=1(mod p)
- HDU 2138 How many prime numbers(Miller_Rabin法判断素数 【*模板】 用到了快速幂算法 )
How many prime numbers Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29046 Accepted: 7342 Case ...
- Golang并行判断素数
## Golang多核判断素数方式 package main import ( "bufio" "fmt" "os" "runti ...
- Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...
- 快速判断素数 --Rabin-Miller算法
以前我在判断素数上一直只会 sqrt(n) 复杂度的方法和所谓的试除法(预处理出sqrt(n)以内的素数,再用它们来除). (当然筛选法对于判断一个数是否是素数复杂度太高) 现在我发现其实还有一种方法 ...
- 2java判断素数
package com.test; import java.math.*;import java.util.Scanner; public class test222 { /** * @param a ...
- filter运行出现 <filter object at 0x000001B68F052828> 判断素数
刚接触filter时 运行总是出现<filter object at 0x000001B68F052828> 得不到想要的数据 后来发现是因为filter的结果是一个数组 需要 lis ...
- 【递归入门】组合+判断素数:dfs(递归)
题目描述 已知 n 个整数b1,b2,…,bn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和. 例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
随机推荐
- kepp running 团队视频分析初步总结
一.遇码则码队视频讨论: 时 间:2020.03.31 方 式:视频会议 参加人员:温学智,胡海靖,莫佳亮 二.视频讨论会议截图: 三.纪要内容: (1).主要功能和界面显示: 温学智:在 ...
- MySQL数据库二
筛选条件 比较运算符: 等于: = (注意!不是==) 大于等于: >= IS NULL 不等于: != 或 <> 小于: ...
- MTK Android 计算器Calculator输入暗码!77!+,启动工厂测试apk
Android8.0 计算器Calculator输入暗码!77!+,启动工厂测试apk 路径: packages/apps/ExactCalculator/src/com/android/calcul ...
- 虚拟机VMware 安装后虚拟机网卡与主机网卡数据交换关系
安装好虚拟机以后,在网络连接里面可以看到多了两块网卡: 其中VMnet1是虚拟机Host-only模式的网络接口,VMnet8是NAT模式的网络接口,这些后面会详细介绍.在VMware Worksta ...
- Maven 命令深度理解
1.前言 Maven 命令看起来简单,一学即会 .其实,Maven 命令底层是插件的执行过程.了解插件和插件目标才有助于深刻的理解 Maven命令. 2.插件与命令的关系 Maven本质上是一个插件框 ...
- springboot集成JdbcTemplate+druid
application.yml datasource: username: root password: root url: jdbc:mysql://localhost:3306/early_war ...
- P1464 Function
Function 简 单 的 递 归 这道题一开始十分智障地用递归做,虽然知道没那么简单,但还是冒着送死的心态交了一遍,果然,如我所料 样例输入: 密密麻麻,几万行的样例输入 //:) ...
- windows UAC 提权实验(CVE-2019-1388)
--------------------------------------------------------------------------------- 声明:本文仅做学习,实验主机为虚拟机 ...
- 【山外笔记-数据库】Memcached详解教程
本文打印版文档下载地址 [山外笔记-数据库]Memcached详解教程-打印版.pdf 一.Memcached数据库概述 1.Memcached简介 (1)Memcached是一个自由开源的,高性能, ...
- Springboot:异步业务处理(十二)
说明 当正常业务处理调用一个复杂业务或者耗时较长的请求时,客户等待时间会比较长,造成不好的用户体验,所以这时候需要用的异步处理 构建一个群发邮件的service接口及实现(模拟) 接口:com\spr ...