AlexeyAB DarkNet YOLOv3框架解析与应用实践(五)

RNNs in Darknet

递归神经网络是表示随时间变化的数据的强大模型。为了更好地介绍RNNs,我强烈推荐Andrej Karpathy去年的博客文章,这是实现RNNs的一个很好的资源!

所有这些模型都使用相同的网络架构,一个包含3个递归模块的普通RNN。

每个模块由3个完全连接的层组成。输入层将信息从输入传播到当前状态。递归层通过时间将信息从上一个状态传播到当前状态。由于我们希望输入层和递归层都影响当前状态,所以我们将它们的输出相加以得到当前状态。最后,输出层将当前状态映射到RNN模块的输出。              网络的输入是一个1-hot编码的ASCII字符。我们训练网络预测字符流中的下一个字符。输出被限制为使用softmax层的概率分布。

由于每个递归层都包含有关当前字符和过去字符的信息,因此它可以使用此上下文来预测单词或短语中的未来字符。随着时间的推移,训练的内容如下:

尽管一次只能预测一个字符,但这些网络可以非常强大。在测试时,我们可以评估给定句子的可能性,也可以让网络自己生成文本!

要生成文本,首先我们通过输入某些字符(如换行符“\n”)或一组字符(如句子)来建立网络。然后,我们将网络输出的最后一个字符作为输入反馈到网络中。由于网络的输出是下一个字符的概率分布,我们可以从给定的分布中提取最可能的字符或样本,但采样往往会产生更有趣的结果。

用Darknet生成文本

首先你应该安装Darknet。因为您不需要CUDA或OpenCV,所以这就像克隆GitHub存储库一样简单:

git clone https://github.com/pjreddie/darknet

cd darknet

make

选择要使用的权重文件后,可以使用以下命令生成文本:

./darknet rnn generate cfg/rnn.cfg <weights>

也可以将各种标志传递给此命令:

-len<int>:更改生成文本的长度,默认为1000

-seed<string>:用给定的字符串为RNN设定种子,默认为“\n”

-srand<int>:为可重复运行的随机数生成器设置种子

-temp<float>:设置采样温度,默认为0.7

要生成此文本,必须下载此权重文件:grrm.weights(36 MB)。然后运行以下命令:

./darknet rnn generate cfg/rnn.cfg grrm.weights -srand 0 -seed JON

您可以更改srand或seed以生成不同的文本,所以请使用wild!我真的希望我不会因此被起诉。。。

OS X上的随机数生成器与Linux上的不同,因此如果运行相同的命令,则会得到不同的输出。

我不打算发布这个模型,但你可以下载自己的松弛日志,并在上面训练一个模型!怎么,你问?继续读。。。。

训练自己的模型

你也可以在新的文本数据上训练自己的模型!训练配置文件是cfg/rnn.train.cfg。训练所需的只是一个文本文件,其中包含所有ASCII格式的数据。然后运行以下命令:

./darknet rnn train cfg/rnn.train.cfg -file data.txt

模型会将定期备份保存到函数train_char_rnn中src/rnn.c中指定的目录,您可能希望将此目录更改为适合您的计算机的位置。要从备份重新开始训练,您可以运行:

./darknet rnn train cfg/rnn.train.cfg backup/rnn.train.backup -file data.txt

如果你想在大量数据上训练大型模型,你可能需要在一个快速的GPU上运行它。你可以在CPU上训练它,但可能需要一段时间,你已经被警告了!

AlexeyAB DarkNet YOLOv3框架解析与应用实践(五)的更多相关文章

  1. AlexeyAB DarkNet YOLOv3框架解析与应用实践(六)

    AlexeyAB DarkNet YOLOv3框架解析与应用实践(六) 1. Tiny Darknet 听过很多人谈论SqueezeNet. SqueezeNet很酷,但它只是优化参数计数.当大多数高 ...

  2. AlexeyAB DarkNet YOLOv3框架解析与应用实践(四)

    AlexeyAB DarkNet YOLOv3框架解析与应用实践(四) Nightmare 从前,在一所大学的大楼里,西蒙尼亚.维达第和齐瑟曼有一个很好的主意,几乎和你现在坐的大楼完全不同.他们想,嘿 ...

  3. AlexeyAB DarkNet YOLOv3框架解析与应用实践(三)

    AlexeyAB DarkNet YOLOv3框架解析与应用实践(三) ImageNet分类 您可以使用Darknet为1000级ImageNet挑战赛分类图像.如果你还没有安装Darknet,你应该 ...

  4. AlexeyAB DarkNet YOLOv3框架解析与应用实践(二)

    AlexeyAB DarkNet YOLOv3框架解析与应用实践(二) 版本3有什么新功能? YOLOv3使用了一些技巧来改进训练和提高性能,包括:多尺度预测.更好的主干分类器等等.全部细节都在我们的 ...

  5. AlexeyAB DarkNet YOLOv3框架解析与应用实践(一)

    AlexeyAB DarkNet YOLOv3框架解析与应用实践(一) Darknet:  C语言中的开源神经网络 Darknet是一个用C和CUDA编写的开源神经网络框架.它速度快,易于安装,支持C ...

  6. mybatis 3.x源码深度解析与最佳实践(最完整原创)

    mybatis 3.x源码深度解析与最佳实践 1 环境准备 1.1 mybatis介绍以及框架源码的学习目标 1.2 本系列源码解析的方式 1.3 环境搭建 1.4 从Hello World开始 2 ...

  7. iScroll框架解析——Android 设备页面内 div(容器,非页面)overflow:scroll; 失效解决(转)

    移动平台的活,兼容问题超多,今儿又遇到一个.客户要求在弹出层容器内显示内容,但内容条数过多,容器显示滚动条.按说是So easy,容器设死宽.高,CSS加属性 overflow:scroll; -we ...

  8. nodejs 实践:express 最佳实践(五) connect解析

    nodejs 实践:express 最佳实践(五) connect解析 nodejs 发展很快,从 npm 上面的包托管数量就可以看出来.不过从另一方面来看,也是反映了 nodejs 的基础不稳固,需 ...

  9. .NET Core 多框架支持(net45+netstandard20)实践中遇到的一些问题总结

    .NET Core 多框架支持(net45+netstandard20)实践中遇到的一些问题总结 前言 本文主要是关于.NET Standard 代码 在多框架 和 多平台 支持自己实践过程中遇到的一 ...

随机推荐

  1. php 不定参数的传递

    相关函数 func_get_args func_num_args <?php function more_args(){ $args = func_get_args(); for($i=0;$i ...

  2. LA3029最大子矩阵

    题意:       给你一个n*m的矩阵<每个格子不是'F'就是'R'>,让你找一个最大的'F'矩阵,输出他的面积*3. 思路:       比较经典的题目了,现在想起来比较好想,以前的话 ...

  3. The 2014 ACM-ICPC Asia Mudanjiang Regional First Round A

    网选A,水题: 这个是水题,只要枚举一遍,看有多少a[i-1]<a[i]>a[i+1],不解释了.

  4. Win64 驱动内核编程-34.对抗与枚举MiniFilter

    对抗与枚举MiniFilter MiniFilter 是目前杀毒软件用来实现"文件系统自我保护"和"文件实时监控"的方法. 由于 MiniFilter 模型简单 ...

  5. 将大量ASCII码值转换成字符函数CHR()的小技巧

    一.在学习命令执行漏洞的过程中,遇到以下情况: 当服务器上传不了马或者马被过滤的时候,我们可以迂回一下,通过执行写马命令到服务器,在服务器里面写马,该命令是通过ascii编码过的命令,防止被过滤. 1 ...

  6. 【vue-06】webpack npm

    什么是Webpack Webpack是一款模块加载器兼打包工具,他能把各种资源,比如js,css,less转化成一个静态文件,减少页面的请求,提高效率. 安装Webpack 在安装webpack之前, ...

  7. 10个 解放双手的 IDEA 插件,这些代码都不用写(第二弹)

    本文案例收录在 https://github.com/chengxy-nds/Springboot-Notebook 大家好,我是小富~ 鸽了很久没发文,不写文章的日子真的好惬意,每天也不用愁着写点什 ...

  8. Django(7)url命名的作用

    前言 为什么我们url需要命名呢?url命名的作用是什么?我们先来看一个案例 案例 我们先在一个Django项目中,创建2个App,前台front和后台cms,然后在各自app下创建urls.py文件 ...

  9. Asp.NetCore Web开发之跨域问题

    在前后端分离的web开发中,解决跨域问题是不可避免的,为什么会出现跨域问题呢,这主要是因为web中的"同源策略",浏览器出于安全原因,不让用户随便访问不同于当前站点的资源,也就是说 ...

  10. 源码安装Python3

    源码安装Python3 一.安装Python3需要的依赖包 [root@localhost ~]# yum install -y gcc make wget openssl openssl-devel ...