\(\mathcal{Description}\)

  Link.

  给定 \(n\) 个区间,第 \(i\) 个为 \([l_i,r_i]\),有权值 \(w_i\)。设一无向图 \(G=(V=\{1,2,\dots,n\},E)\),\((u,v)\in E\Leftrightarrow [l_u,r_u]\cap[l_v,r_v]\not=\varnothing\),求删除若干区间使得 \(G\) 无环的被删除区间权值和的最小值。

  \(n\le2.5\times10^5\)。

\(\mathcal{Solution}\)

  不要学了 DP 就只想 DP,优化不来麻烦推翻重来。

  首先 \(G\) 的合法条件等价于不存在三区间交于一点,这是一个经典费用流流模型,建图方法略。

  当然直接 Dinic 啥的直接挂掉,考虑到只需要增广两次,可以使用势能 Dijkstra + EK 算法求最小费用最大流。概括上来说,令 \(u\) 的势能 \(h_u\) 为累加的 \(d_u\) 之和,使得此时图上 \(w(u,v)+h_u-h_v\) 非负,就能跑 Dijkstra 了。本题只用增广两次,所以在初始 DAG 上求出 \(h\) 后甚至不必更新。

  具体讲解:OneInDark %%%.

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <queue>
#include <cstdio>
#include <iostream> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL;
typedef std::pair<LL, int> PLI;
#define fi first
#define se second template<typename Tp>
inline Tp tmin( const Tp& a, const Tp& b ) { return a < b ? a : b; } const int MAXN = 2.5e5, MAXV = 5e5;
const LL LINF = 1ll << 60;
int n, ecnt = 1, mxp, head[MAXV + 5];
struct Edge { int to, flw; LL cst; int nxt; } graph[( MAXV + MAXN ) * 2 + 5];
LL hgt[MAXV + 5], dis[MAXV + 5];
int pre[MAXV + 5], flw[MAXV + 5]; inline void link( const int s, const int t, const int f, const LL c ) {
graph[++ecnt] = { t, f, c, head[s] }, head[s] = ecnt;
graph[++ecnt] = { s, 0, -c, head[t] }, head[t] = ecnt;
} inline void getHeight() {
hgt[0] = 0;
rep ( u, 0, mxp - 1 ) {
for ( int i = head[u]; i; i = graph[i].nxt ) if ( graph[i].flw ) {
hgt[graph[i].to] = tmin( hgt[graph[i].to], hgt[u] + graph[i].cst );
}
}
} inline bool dijkstra() {
static bool vis[MAXV + 5];
static std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI> > heap;
rep ( i, 0, mxp ) pre[i] = flw[i] = 0, dis[i] = LINF, vis[i] = false; heap.push( { dis[0] = 0, 0 } ), flw[0] = 2;
while ( !heap.empty() ) {
PLI p( heap.top() ); heap.pop();
if ( vis[p.se] ) continue;
vis[p.se] = true; for ( int i = head[p.se], v; i; i = graph[i].nxt ) {
LL d = p.fi + graph[i].cst + hgt[p.se] - hgt[v = graph[i].to];
if ( graph[i].flw && dis[v] > d ) {
heap.push( { dis[v] = d, v } );
pre[v] = i, flw[v] = tmin( flw[p.se], graph[i].flw );
}
}
}
return dis[mxp] != LINF;
} int main() {
std::ios::sync_with_stdio( false ), std::cin.tie( 0 ); std::cin >> n;
rep ( i, 1, n ) {
int s, e; LL w; std::cin >> s >> e >> w, ++e;
link( s, e, 1, -w ), mxp = mxp < e ? e : mxp;
}
rep ( i, 0, mxp - 1 ) link( i, i + 1, 2, 0 ); getHeight();
LL ans = 0;
while ( dijkstra() ) {
for ( int u = mxp; u; u = graph[pre[u] ^ 1].to ) {
graph[pre[u]].flw -= flw[mxp], graph[pre[u] ^ 1].flw += flw[mxp];
}
ans += ( dis[mxp] + hgt[mxp] - hgt[0] ) * flw[mxp];
} std::cout << -ans << '\n';
return 0;
}

Solution -「Gym 102759F」Interval Graph的更多相关文章

  1. Solution -「Gym 102956F」Find the XOR

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...

  2. Solution -「Gym 102759I」Query On A Tree 17

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...

  3. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  4. Solution -「Gym 102979L」 Lights On The Road

    \(\mathcal{Description}\)   Link.   给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...

  5. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  6. Solution -「Gym 102956F」Border Similarity Undertaking

    \(\mathcal{Description}\)   Link.   给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...

  7. Solution -「Gym 102956A」Belarusian State University

    \(\mathcal{Description}\)   Link.   给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...

  8. Solution -「Gym 102798I」Sean the Cuber

    \(\mathcal{Description}\)   Link.   给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数.   数据组数 \(T\le2.5\times10^5\). ...

  9. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

随机推荐

  1. js中点击返回顶部

    window.scrollTo(0, 0);当点击返回顶部的时候调用这个方法即可 handleScrollTop(){ window.scrollTo(0, 0); }

  2. vue爬坑之路(插件安装)

    npm install vue-table-with-tree-grid --save import ZkTable from 'vue-table-with-tree-grid' Vue.use(Z ...

  3. day1 三位数各个位上的数字和

    int main(){ int x = 0; scanf("%d", &x); if (x > 999 || x < 0) { printf("输入错 ...

  4. 马哈鱼血缘分析工具部署介绍--win 10

    马哈鱼血缘分析工具部署介绍--win 10 随着大数据技术的发展与普及,数据治理和数据质量变得越来越重要,数据血缘分析在业界悄然兴起并得到了广泛流行,马哈鱼是国内少有的一款专业且易用的血缘分析工具.本 ...

  5. 将待授权的数据库的dbowner指派给该用户

    USE 数据库goEXEC dbo.sp_changedbowner N'账号'

  6. codeblocks中报错:'to_string' was not declared in this scope解决方案

    在windows下使用codeblocks(编译器采用MinGW)时,有时会遇到"'to_string' was not declared in this scope"的错误,这里 ...

  7. 很详细的FFT(快速傅里叶变换)概念与实现

    FFT 首先要说明一个误区,很多人认为FFT只是用来处理多项式乘的,其实FFT是用来实现多项式的系数表示法和点值表示法的快速转换的,所以FFT的用处远不止多项式乘. FFT的前置知识:点值表示法,复数 ...

  8. insert插入日期

    7.5.insert插入日期 数字格式化:format select ename,sal from emp: 格式化数字:fromat(数字,'格式') select ename,format(sal ...

  9. Druid未授权访问实战利用

    Druid未授权访问实战利用 ​ 最近身边的同学都开始挖src了,而且身边接触到的挖src的网友也是越来越多.作者也是在前几天开始了挖src之路.惊喜又遗憾的是第一次挖src就挖到了一家互联网公司的R ...

  10. 如何加载本地下载下来的BERT模型,pytorch踩坑!!

    近期做实验频繁用到BERT,所以想着下载下来使用,结果各种问题,网上一搜也是简单一句:xxx.from_pretrained("改为自己的路径") 我只想说,大坑!!! 废话不多说 ...