\(\mathcal{Description}\)

  Link.

  给定 \(n\) 个区间,第 \(i\) 个为 \([l_i,r_i]\),有权值 \(w_i\)。设一无向图 \(G=(V=\{1,2,\dots,n\},E)\),\((u,v)\in E\Leftrightarrow [l_u,r_u]\cap[l_v,r_v]\not=\varnothing\),求删除若干区间使得 \(G\) 无环的被删除区间权值和的最小值。

  \(n\le2.5\times10^5\)。

\(\mathcal{Solution}\)

  不要学了 DP 就只想 DP,优化不来麻烦推翻重来。

  首先 \(G\) 的合法条件等价于不存在三区间交于一点,这是一个经典费用流流模型,建图方法略。

  当然直接 Dinic 啥的直接挂掉,考虑到只需要增广两次,可以使用势能 Dijkstra + EK 算法求最小费用最大流。概括上来说,令 \(u\) 的势能 \(h_u\) 为累加的 \(d_u\) 之和,使得此时图上 \(w(u,v)+h_u-h_v\) 非负,就能跑 Dijkstra 了。本题只用增广两次,所以在初始 DAG 上求出 \(h\) 后甚至不必更新。

  具体讲解:OneInDark %%%.

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <queue>
#include <cstdio>
#include <iostream> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL;
typedef std::pair<LL, int> PLI;
#define fi first
#define se second template<typename Tp>
inline Tp tmin( const Tp& a, const Tp& b ) { return a < b ? a : b; } const int MAXN = 2.5e5, MAXV = 5e5;
const LL LINF = 1ll << 60;
int n, ecnt = 1, mxp, head[MAXV + 5];
struct Edge { int to, flw; LL cst; int nxt; } graph[( MAXV + MAXN ) * 2 + 5];
LL hgt[MAXV + 5], dis[MAXV + 5];
int pre[MAXV + 5], flw[MAXV + 5]; inline void link( const int s, const int t, const int f, const LL c ) {
graph[++ecnt] = { t, f, c, head[s] }, head[s] = ecnt;
graph[++ecnt] = { s, 0, -c, head[t] }, head[t] = ecnt;
} inline void getHeight() {
hgt[0] = 0;
rep ( u, 0, mxp - 1 ) {
for ( int i = head[u]; i; i = graph[i].nxt ) if ( graph[i].flw ) {
hgt[graph[i].to] = tmin( hgt[graph[i].to], hgt[u] + graph[i].cst );
}
}
} inline bool dijkstra() {
static bool vis[MAXV + 5];
static std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI> > heap;
rep ( i, 0, mxp ) pre[i] = flw[i] = 0, dis[i] = LINF, vis[i] = false; heap.push( { dis[0] = 0, 0 } ), flw[0] = 2;
while ( !heap.empty() ) {
PLI p( heap.top() ); heap.pop();
if ( vis[p.se] ) continue;
vis[p.se] = true; for ( int i = head[p.se], v; i; i = graph[i].nxt ) {
LL d = p.fi + graph[i].cst + hgt[p.se] - hgt[v = graph[i].to];
if ( graph[i].flw && dis[v] > d ) {
heap.push( { dis[v] = d, v } );
pre[v] = i, flw[v] = tmin( flw[p.se], graph[i].flw );
}
}
}
return dis[mxp] != LINF;
} int main() {
std::ios::sync_with_stdio( false ), std::cin.tie( 0 ); std::cin >> n;
rep ( i, 1, n ) {
int s, e; LL w; std::cin >> s >> e >> w, ++e;
link( s, e, 1, -w ), mxp = mxp < e ? e : mxp;
}
rep ( i, 0, mxp - 1 ) link( i, i + 1, 2, 0 ); getHeight();
LL ans = 0;
while ( dijkstra() ) {
for ( int u = mxp; u; u = graph[pre[u] ^ 1].to ) {
graph[pre[u]].flw -= flw[mxp], graph[pre[u] ^ 1].flw += flw[mxp];
}
ans += ( dis[mxp] + hgt[mxp] - hgt[0] ) * flw[mxp];
} std::cout << -ans << '\n';
return 0;
}

Solution -「Gym 102759F」Interval Graph的更多相关文章

  1. Solution -「Gym 102956F」Find the XOR

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...

  2. Solution -「Gym 102759I」Query On A Tree 17

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...

  3. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  4. Solution -「Gym 102979L」 Lights On The Road

    \(\mathcal{Description}\)   Link.   给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...

  5. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  6. Solution -「Gym 102956F」Border Similarity Undertaking

    \(\mathcal{Description}\)   Link.   给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...

  7. Solution -「Gym 102956A」Belarusian State University

    \(\mathcal{Description}\)   Link.   给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...

  8. Solution -「Gym 102798I」Sean the Cuber

    \(\mathcal{Description}\)   Link.   给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数.   数据组数 \(T\le2.5\times10^5\). ...

  9. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

随机推荐

  1. 日志收集系统系列(三)之LogAgent

    一.什么是LogAhent 类似于在linux下通过tail的方法读日志文件,将读取的内容发给kafka,这里的tailf是可以动态变化的,当配置文件发生变化时,可以通知我们程序自动增加需要增加的配置 ...

  2. Zuul的应用

    一.介绍 注:Zuul中默认就已经集成了Ribbon负载均衡和Hystix熔断机制.但是所有的超时策略都是走的默认值,比如熔断超时时间只有1S,很容易就触发了. 二.依赖 <dependency ...

  3. 深度分析 [go的HttpClient读取Body超时]

    故障现场 本人负责的主备集群,发出的 HttpClient 请求有 30%概率超时, 报context deadline exceeded (Client.Timeout or context can ...

  4. 网络协议学习笔记(二)物理层到MAC层,交换机和VLAN,ICMP与ping原理

    概述 之前网络学习笔记主要讲解了IP的诞生,或者说整个操作系统的诞生,一旦有了IP,就可以在网络的环境里和其他的机器展开沟通了.现在开始给大家讲解关于网络底层的相关知识. 从物理层到MAC层:如何在宿 ...

  5. Spring循环依赖原理

    Spring循环依赖的原理解析 1.什么是循环依赖? ​ 我们使用Spring的时候,在一个对象中注入另一个对象,但是另外的一个对象中也包含该对象.如图: 在Student中包含了teacher的一个 ...

  6. 嵌入式学习第四步—C语言学习用软件安装

    学习一门计算机语言,不能光靠看书,最主要的是要动手联系.不记得从哪里看到过,要成为一名网络大牛,要有10万行以上的程序才是基础. 首先需要一个能够编辑程序的地方(IDE),经过大约10天的网上看各种视 ...

  7. 遇到奇怪的问题:web.py 0.40中使用web.input(),出现一堆奇怪的错误

    有的请求很正常,有的请求就出现了500错误. 这里使用POST请求,然后在web.input()中出现了很长很长的错误. 猜测是这个机器上安装了python2.7 / python 3.6 / pyt ...

  8. Anchor CMS 0.12.7 跨站请求伪造漏洞(CVE-2020-23342)

    这个漏洞复现相对来说很简单,而且这个Anchor CMS也十分适合新手训练代码审计能力.里面是一个php框架的轻量级设计,通过路由实现的传递参数. 0x00 漏洞介绍 Anchor(CMS)是一款优秀 ...

  9. AOP操作-AspectJ注解

    AOP操作(AspectJ注解) 1,创建类,在类里面定义方法 2,创建增强类(编写增强逻辑) (1)在增强类里面,创建方法,让不同方法代表不同通知类型 3,进行通知的配置 (1)在spring配置文 ...

  10. 多线程(Thread类中的方法线程名称)

    1 package multithread; 2 3 /* 4 * 如何创建一个线程呢? 5 * 6 * 创建线程方式一:继承Thread类. 7 * 8 * 步骤: 9 * 1,定义一个类继承Thr ...