题解

一道思维量巨大的题,很烧脑

考虑异或差分,设 \(d_i=a_i\;\;xor\;\;a_{i-1}\),那么对于翻转 \(a_i\sim a_j\) 就相当于 \(b_i\) 和 \(b_{j+1}\) 异或 \(1\)

那么我们最后要求的异或序列就全是 \(0\),那么想办法消去 \(1\),考虑状压

因为我们只想消去 \(1\),所以我们只需考虑异或为 \(1\) 的位置,而这最多有 \(2k\) 位,所以我们对这状压。

那么我们考虑由 \(i\) 位异或到 \(j\) 位需要多少步,这个通过 \(bfs\) 来解决。

技巧:我们可以在枚举状态时,对每个状态只转移最低位,因为每个状态都会被转移到。

这样复杂度为 \(\mathcal O(2knm+2k×2^{2k})\)

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define lowbit(x) ((x)&-(x))
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=4e4+7,K=18;
int dis[K][K],tdis[N],vis[N],b[K<<2],a[K],que[N],lg[1<<K],f[1<<K],tot,n,k,m;
void bfs(int x,int id) {
memset(tdis,0x3f,sizeof(tdis));
ri hd=1,tl=0;
tdis[que[p(tl)]=x]=0;
while(hd<=tl) {
x=que[hd++];
for (ri i(1);i<=m;p(i)) {
if (x-b[i]>0&&tdis[x-b[i]]>tdis[x]+1) tdis[x-b[i]]=tdis[x]+1,que[p(tl)]=x-b[i];
if (x+b[i]<=n+1&&tdis[x+b[i]]>tdis[x]+1) tdis[x+b[i]]=tdis[x]+1,que[p(tl)]=x+b[i];
}
}
for (ri i(1);i<=tot;p(i)) dis[id][i]=tdis[a[i]];
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(k),read(m);
for (ri i(1),x;i<=k;p(i)) read(x),vis[x]^=1,vis[x+1]^=1;
for (ri i(1);i<=m;p(i)) read(b[i]);
for (ri i(1);i<=n+1;p(i)) if (vis[i]) a[p(tot)]=i;
for (ri i(1);i<=tot;p(i)) bfs(a[i],i);
int S=(1<<tot)-1;
for (ri i(2);i<=S;p(i)) lg[i]=lg[i>>1]+1;
memset(f,0x3f,sizeof(f));
f[S]=0;
for (ri i(S);i;--i) {
int low=lg[lowbit(i)],bs=i^(1<<low);
for (ri j(low+1);j<tot;p(j)) {
if (!(i&(1<<j))) continue;
int aim=bs^(1<<j);
f[aim]=cmin(f[aim],f[i]+dis[low+1][j+1]);
}
}
printf("%d\n",f[0]);
return 0;
}
}
int main() {return nanfeng::main();}

题解 P3943 星空的更多相关文章

  1. 洛谷P3943 星空

    洛谷P3943 星空 题目背景 命运偷走如果只留下结果, 时间偷走初衷只留下了苦衷. 你来过,然后你走后,只留下星空. 题目描述 逃不掉的那一天还是来了,小 F 看着夜空发呆. 天上空荡荡的,没有一颗 ...

  2. 洛谷P3943 星空——题解

    一道很好的锻炼思维难度的题,如果您能在考场上直接想出来的话,提高组450分以上就没问题了吧.(别像作者一样看了好几篇题解才勉强会) 先提取出题目大意:给定一个长度n<=40000的01串,其中1 ...

  3. [洛谷P3943]:星空(DP+最短路)

    题目传送门 题目背景 命运偷走如果只留下结果, 时间偷走初衷只留下了苦衷.你来过,然后你走后,只留下星空. 题目描述 逃不掉的那一天还是来了,小$F$看着夜空发呆.天上空荡荡的,没有一颗星星——大概是 ...

  4. 洛谷 P3943 星空

    题目背景 命运偷走如果只留下结果, 时间偷走初衷只留下了苦衷. 你来过,然后你走后,只留下星空. 题目描述 逃不掉的那一天还是来了,小 F 看着夜空发呆. 天上空荡荡的,没有一颗星星——大概是因为天上 ...

  5. P3943 星空 区间异或差分

    \(\color{#0066ff}{ 题目描述 }\) 逃不掉的那一天还是来了,小 F 看着夜空发呆. 天上空荡荡的,没有一颗星星--大概是因为天上吹不散的乌云吧. 心里吹不散的乌云,就让它在那里吧, ...

  6. 洛谷P3943星空

    啦啦啦啦——又是五月天的歌,题目传送门 这道题比之前两道真的不是同一级别的,这里我这个蒟蒻也讲不清,不如看下这位大佬的吧,他的写的已经非常清楚了:Z-Y-Y-S,这里我就只放下我的代码,也是按照这位大 ...

  7. P3943 星空

    传送门 观察题目数据,发现 k ≤ 8 ,可能可以从这里入手解决问题 考虑状态压缩 但是我们每次操作都会让一连串的序列改变,而序列的每个状态都是必须要知道的 很麻烦,所以考虑如何把一段区间表示地简单一 ...

  8. 差分数组 and 树上差分

    差分数组 定义 百度百科中的差分定义 //其实这完全和要讲的没关系 qwq 进去看了之后是不是觉得看不懂? 那我简单概括一下qwq 差分数组de定义:记录当前位置的数与上一位置的数的差值. 栗子 容易 ...

  9. 2019.2-2019.3 TO-DO LIST

    DP P2723 丑数 Humble Numbers(完成时间:2019.3.1) P2725 邮票 Stamps(完成时间:2019.3.1) P1021 邮票面值设计(完成时间:2019.3.1) ...

随机推荐

  1. openjudge走迷宫(DFS)

    题目: 描述 一个迷宫由R行C列格子组成,有的格子里有障碍物,不能走:有的格子是空地,可以走. 给定一个迷宫,求从左上角走到右下角最少需要走多少步(数据保证一定能走到).只能在水平方向或垂直方向走,不 ...

  2. Windows环境mysql自动备份

    1.编写bat文件备份mysql 1 rem ******MySQL backup start****** 2 @echo off 3 4 ::删除一周前的备份数据 5 forfiles /p &qu ...

  3. mybatis 加载策略及注解开发

    1. 延迟策略 在需要用到数据时在加载相关数据,常用于一对多关系, 优点:先从单表查询,需要时再从关联表去关联查询,大大提高数据库性能, 缺点:当需要用到数据时,才会进行数据库查询,这样在大批量数据查 ...

  4. Qt5双缓冲机制与实例

    1. 双缓冲机制 所谓双缓冲机制,是指在绘制控件时,首先将要绘制的内容绘制在一个图片中,再将图片一次性地绘制到控件上. 在早期的Qt版本中,若直接在控件上进行绘制工作,则在控件重绘时会产生闪烁的现象, ...

  5. 【数论】A%B Problem luogu-1865

    题目描述 让你输出区间内的素数的个数 分析 预处理筛法,在随便搞一下就好了. AC代码 #include <bits/stdc++.h> using namespace std; #def ...

  6. 为什么要学习Netty?

    一.传统的BIO编程 ​ 网络编程的基本模型是 Client/Server 模型,也就是两个进程之间进行相互通信,其中服务端提供位置信息(绑定的 IP 地址和监听端口),客户端通过连接操作向服务端监听 ...

  7. C语言学习(三)

    一.数组.循环.判断条件   #include<stdio.h> int main(){ int a =100; int b =200; int i; int arr [5]; if (a ...

  8. PostgreSQL数据库结构

    PG数据存储结构分为:逻辑结构和物理存储. 一.逻辑存储结构是:内部的组织和管理数据的方式[逻辑存储结构适用于不同的操作系统和硬件平台] 二.物理存储结构是:操作系统中组织和管理数据的方式. 1.逻辑 ...

  9. 第一篇 -- Sprint Tool Suite配置和Hello World编写

    首先需要安装 1. Sprint Tool Suite(本次所用版本:spring-tool-suite-3.8.3.RELEASE-e4.6.2-win32-x86_64) 2. Tomcat(本次 ...

  10. Skywalking-04:扩展Metric监控信息

    扩展 Metric 监控信息 官方文档 Source and Scope extension for new metrics 案例:JVM Thread 增加 Metrics 修改 Thread 的定 ...