hdu 5552 Bus Routes

考虑有环的图不方便,可以考虑无环连通图的数量,然后用连通图的数量减去就好了。

无环连通图的个数就是树的个数,又 prufer 序我们知道是 $ n^{n-2} $ 其中又由于有 $ n-1 $ 个边,每个边可以涂色,所以总共无环的方案数量是 $ m^{n-1} n^{n-2} $

那么现在就要算连通图的数量了。这个不如不连通图的数量好算。

不连通图的数量怎么算呢,原本想的是容斥,但是貌似不好实现,看了题解发现一种神仙思路。考虑固定一个点,并且让这个点连出一个连通块,剩下的点随意连,必然不连通。并且由于最后图中一定有这个点,这样是可以不重不漏计算所有情况的。

考虑用 $ s(i) $ 表示 $ i $ 个点的的方案总数,就是 $ (m+1)^{\frac{n(n+1)}{2}} $ ,一共有 $ \frac{n(n+1)}{2} $ 个边,可以选择 $ m $ 种颜色的一种或者不要这个边。

考虑 $ f(i) $ 表示 $ i $ 个点的连通图的方案数。

$ f(n) = g(n) - \displaystyle\sum_{i=1}^n \binom{i-1}{n-1} f(i)g(n-i) $

这个看起来就很分治NTT

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
#define P 152076289
#define MAXN (1 << 19) + 13
int n , m;
int a[MAXN];
int Pow(int x,int y) {
int res=1;
while(y) {
if(y&1) res=res*(ll)x%P;
x=x*(ll)x%P,y>>=1;
}
return res;
}
int wn[2][MAXN];
void getwn(int l) {
for(int i=1;i<(1<<l);i<<=1) {
int w0=Pow(106,(P-1)/(i<<1)),w1=Pow(106,P-1-(P-1)/(i<<1));
wn[0][i]=wn[1][i]=1;
for(int j=1;j<i;++j)
wn[0][i+j]=wn[0][i+j-1]*(ll)w0%P,
wn[1][i+j]=wn[1][i+j-1]*(ll)w1%P;
}
}
int rev[MAXN];
void getr(int l) { for(int i=1;i<(1<<l);++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l-1); }
void NTT(int *A,int len,int f) {
for(int i=0;i<len;++i) if(rev[i]<i) swap(A[i],A[rev[i]]);
for(int l=1;l<len;l<<=1)
for(int i=0;i<len;i+=(l<<1))
for(int k=0;k<l;++k) {
int t1=A[i+k],t2=A[i+l+k]*(ll)wn[f][l+k]%P;
A[i+k]=(t1+t2)%P;
A[i+l+k]=(t1-t2+P)%P;
}
if( f == 1 ) for(int inv=Pow(len,P-2),i=0;i<len;++i) A[i]=A[i]*(ll)inv%P;
}
int f[MAXN];
int A[MAXN] , B[MAXN];
int J[MAXN] , invJ[MAXN] , s[MAXN];
void CDQ(int *a,int *b,int l,int r){
if( l == r ) { a[l] += s[l] , a[l] %= P; return; }
int m = l + r >> 1;
CDQ( a , b , l , m );
int p = 1 , len = 0;
while( p <= ( r - l + 1 ) * 2 ) p <<= 1 , ++ len;
getr( len ) , getwn( len );
for( int i = 0 ; i < p ; ++i ) A[i] = B[i] = 0;
for( int i = l ; i <= m ; ++i ) A[i - l] = 1ll * a[i] * invJ[i - 1] % P;
for( int i = 0 ; i <= r - l ; ++i ) B[i] = 1ll * s[i] * invJ[i] % P;
NTT( A , p , 0 ) , NTT( B , p , 0 );
for( int i = 0 ; i < p ; ++i ) A[i] = 1ll * A[i] * B[i] % P;
NTT( A , p , 1 );
for( int i = m + 1 ; i <= r ; ++i ) a[i] = ( a[i] - 1ll * J[i - 1] * A[i-l] % P + P ) % P;
CDQ( a , b , m + 1 , r );
}
int kase = 0;
signed main() {
J[0] = invJ[0] = 1;
for( int i = 1 ; i < MAXN ; ++ i )
J[i] = 1ll * J[i - 1] * i % P , invJ[i] = Pow( J[i] , P - 2 );
int T;cin >> T;
while( T --> 0 ) {
cin >> n >> m; m %= P;
memset( f , 0 , sizeof f ) , memset( s , 0 , sizeof s );
for( int i = 1 ; i <= n ; ++ i )
s[i] = Pow( m + 1 , 1ll * i * ( i - 1 ) / 2 % ( P - 1 ) );
f[0] = 1;
CDQ( f , a , 0 , n );
int x;
printf("Case #%d: %d\n",++ kase,( f[n] - 1ll * Pow(n, n - 2) * Pow(m, n - 1) % P + P) % P);
}
}

hdu 5552 Bus Routes的更多相关文章

  1. HDU 5552 Bus Routes(NTT+分治)

    题意 给定 \(n\) 个点,任意连边,每条边有 \(m\) 种颜色可选,求带环连通图的方案数. \(1\leq n\leq 10000\) \(1\leq m < 2^{31}\) 思路 直接 ...

  2. HDU 5552 Bus Routes(2015合肥现场赛A,计数,分治NTT)

    题意  给定n个点,任意两点之间可以不连边也可以连边.如果连边的话可以染上m种颜色. 求最后形成的图,是一个带环连通图的方案数. 首先答案是n个点的图减去n个点能形成的树. n个点能形成的树的方案数比 ...

  3. URAL 1137 Bus Routes(欧拉回路路径)

    1137. Bus Routes Time limit: 1.0 secondMemory limit: 64 MB Several bus routes were in the city of Fi ...

  4. [LeetCode] Bus Routes 公交线路

    We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. For e ...

  5. [Swift]LeetCode815. 公交路线 | Bus Routes

    We have a list of bus routes. Each routes[i]is a bus route that the i-th bus repeats forever. For ex ...

  6. LeetCode解题报告—— Bus Routes

    We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. For e ...

  7. [LeetCode] 815. Bus Routes 公交路线

    We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. For e ...

  8. 【leetcode】815. Bus Routes

    题目如下: We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. ...

  9. HDU 3420 -- Bus Fair ACM

    Bus Fair Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

随机推荐

  1. HCNP Routing&Switching之BGP防环机制和路由聚合

    前文我们了解了BGP路由宣告相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15440860.html:今天我们来聊一聊BGP防环机制和路由聚合相关话题 ...

  2. Java只有值传递

    二哥,好久没更新面试官系列的文章了啊,真的是把我等着急了,所以特意过来催催.我最近一段时间在找工作,能从二哥的文章中学到一点就多一点信心啊! 说句实在话,离读者 trust you 发给我这段信息已经 ...

  3. BUAA 软工 个人博客作业(一)

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 我在这个课程的目标是 通过阅读<构建之法>大致了解软件工程 这个作业在哪 ...

  4. CCD摄像头视场角计算公式

    视场角大小和CCD传感器尺寸和镜头焦距有关: 水平视场角 = 2 × arctan(w / 2f); 垂直视场角 = 2 × arctan(h / 2f); 视场角 = 2 × arctan(d / ...

  5. 广域网(ppp协议、HDLC协议)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105028759 学习课程:<2019王道考研计算机网络> 学习目的 ...

  6. sum-root-to-leaf-numbers leetcode C++

    Given a binary tree containing digits from0-9only, each root-to-leaf path could represent a number. ...

  7. (二)FastDFS 高可用集群架构学习---搭建

    一.单group 单磁盘 的 FastDFS 集群 a.前期准备 1.系统软件说明: 名称 说明 CentOS 7.x(安装系统) libfastcommon FastDFS分离出的一些公用函数包 F ...

  8. 策略路由——使用Router-Policy策略路由进行路由协议的引入

    1.实验目的:实现R3-R2-R1为访问主线路,R3-R4-R1为访问备份线路 2.实验拓扑及IP,如图; 3.基本配置(端口IP) R1: <Huawei>sys[Huawei]sys ...

  9. docker 加入域名

    先运行docker镜像 # 进入 docker 容器 mynginx 是容器名 docker exec -i -t mynginx /bin/bash #安装vim apt-get install v ...

  10. Node.js躬行记(14)——压力测试

    公司有个匿名聊天的常规H5界面,运营向做一次 50W 的推送,为了能配合她的计划,需要对该界面做一次压力测试. 一.JMeter 压测工具选择了JMeter,这是Apache的一个项目,它是用Java ...