hdu 5552 Bus Routes
hdu 5552 Bus Routes
考虑有环的图不方便,可以考虑无环连通图的数量,然后用连通图的数量减去就好了。
无环连通图的个数就是树的个数,又 prufer
序我们知道是 $ n^{n-2} $ 其中又由于有 $ n-1 $ 个边,每个边可以涂色,所以总共无环的方案数量是 $ m^{n-1} n^{n-2} $
那么现在就要算连通图的数量了。这个不如不连通图的数量好算。
不连通图的数量怎么算呢,原本想的是容斥,但是貌似不好实现,看了题解发现一种神仙思路。考虑固定一个点,并且让这个点连出一个连通块,剩下的点随意连,必然不连通。并且由于最后图中一定有这个点,这样是可以不重不漏计算所有情况的。
考虑用 $ s(i) $ 表示 $ i $ 个点的图的方案总数,就是 $ (m+1)^{\frac{n(n+1)}{2}} $ ,一共有 $ \frac{n(n+1)}{2} $ 个边,可以选择 $ m $ 种颜色的一种或者不要这个边。
考虑 $ f(i) $ 表示 $ i $ 个点的连通图的方案数。
$ f(n) = g(n) - \displaystyle\sum_{i=1}^n \binom{i-1}{n-1} f(i)g(n-i) $
这个看起来就很分治NTT
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
#define P 152076289
#define MAXN (1 << 19) + 13
int n , m;
int a[MAXN];
int Pow(int x,int y) {
int res=1;
while(y) {
if(y&1) res=res*(ll)x%P;
x=x*(ll)x%P,y>>=1;
}
return res;
}
int wn[2][MAXN];
void getwn(int l) {
for(int i=1;i<(1<<l);i<<=1) {
int w0=Pow(106,(P-1)/(i<<1)),w1=Pow(106,P-1-(P-1)/(i<<1));
wn[0][i]=wn[1][i]=1;
for(int j=1;j<i;++j)
wn[0][i+j]=wn[0][i+j-1]*(ll)w0%P,
wn[1][i+j]=wn[1][i+j-1]*(ll)w1%P;
}
}
int rev[MAXN];
void getr(int l) { for(int i=1;i<(1<<l);++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l-1); }
void NTT(int *A,int len,int f) {
for(int i=0;i<len;++i) if(rev[i]<i) swap(A[i],A[rev[i]]);
for(int l=1;l<len;l<<=1)
for(int i=0;i<len;i+=(l<<1))
for(int k=0;k<l;++k) {
int t1=A[i+k],t2=A[i+l+k]*(ll)wn[f][l+k]%P;
A[i+k]=(t1+t2)%P;
A[i+l+k]=(t1-t2+P)%P;
}
if( f == 1 ) for(int inv=Pow(len,P-2),i=0;i<len;++i) A[i]=A[i]*(ll)inv%P;
}
int f[MAXN];
int A[MAXN] , B[MAXN];
int J[MAXN] , invJ[MAXN] , s[MAXN];
void CDQ(int *a,int *b,int l,int r){
if( l == r ) { a[l] += s[l] , a[l] %= P; return; }
int m = l + r >> 1;
CDQ( a , b , l , m );
int p = 1 , len = 0;
while( p <= ( r - l + 1 ) * 2 ) p <<= 1 , ++ len;
getr( len ) , getwn( len );
for( int i = 0 ; i < p ; ++i ) A[i] = B[i] = 0;
for( int i = l ; i <= m ; ++i ) A[i - l] = 1ll * a[i] * invJ[i - 1] % P;
for( int i = 0 ; i <= r - l ; ++i ) B[i] = 1ll * s[i] * invJ[i] % P;
NTT( A , p , 0 ) , NTT( B , p , 0 );
for( int i = 0 ; i < p ; ++i ) A[i] = 1ll * A[i] * B[i] % P;
NTT( A , p , 1 );
for( int i = m + 1 ; i <= r ; ++i ) a[i] = ( a[i] - 1ll * J[i - 1] * A[i-l] % P + P ) % P;
CDQ( a , b , m + 1 , r );
}
int kase = 0;
signed main() {
J[0] = invJ[0] = 1;
for( int i = 1 ; i < MAXN ; ++ i )
J[i] = 1ll * J[i - 1] * i % P , invJ[i] = Pow( J[i] , P - 2 );
int T;cin >> T;
while( T --> 0 ) {
cin >> n >> m; m %= P;
memset( f , 0 , sizeof f ) , memset( s , 0 , sizeof s );
for( int i = 1 ; i <= n ; ++ i )
s[i] = Pow( m + 1 , 1ll * i * ( i - 1 ) / 2 % ( P - 1 ) );
f[0] = 1;
CDQ( f , a , 0 , n );
int x;
printf("Case #%d: %d\n",++ kase,( f[n] - 1ll * Pow(n, n - 2) * Pow(m, n - 1) % P + P) % P);
}
}
hdu 5552 Bus Routes的更多相关文章
- HDU 5552 Bus Routes(NTT+分治)
题意 给定 \(n\) 个点,任意连边,每条边有 \(m\) 种颜色可选,求带环连通图的方案数. \(1\leq n\leq 10000\) \(1\leq m < 2^{31}\) 思路 直接 ...
- HDU 5552 Bus Routes(2015合肥现场赛A,计数,分治NTT)
题意 给定n个点,任意两点之间可以不连边也可以连边.如果连边的话可以染上m种颜色. 求最后形成的图,是一个带环连通图的方案数. 首先答案是n个点的图减去n个点能形成的树. n个点能形成的树的方案数比 ...
- URAL 1137 Bus Routes(欧拉回路路径)
1137. Bus Routes Time limit: 1.0 secondMemory limit: 64 MB Several bus routes were in the city of Fi ...
- [LeetCode] Bus Routes 公交线路
We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. For e ...
- [Swift]LeetCode815. 公交路线 | Bus Routes
We have a list of bus routes. Each routes[i]is a bus route that the i-th bus repeats forever. For ex ...
- LeetCode解题报告—— Bus Routes
We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. For e ...
- [LeetCode] 815. Bus Routes 公交路线
We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. For e ...
- 【leetcode】815. Bus Routes
题目如下: We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. ...
- HDU 3420 -- Bus Fair ACM
Bus Fair Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
随机推荐
- Poetry(2)Poetry的基本使用方式
Poetry的基本使用 准备工作 如果你是在一个已有的项目里使用Poetry,你只需要执行 poetry init 命令来创建一个 pyproject.toml 文件: poetry init 可看到 ...
- 2020BUAA软工提问回顾和个人总结作业
2020BUAA软工提问回顾和个人总结作业 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 提问回顾和个人总结作业 我在 ...
- 热身训练2 GCD
题目描述 简要题意: n个数字,a1,a2,...,an m次询问(l,r),每次询问需回答 1.gcd(al,al+1,al+2,...,ar);2.gcd(ax,ax+1,ax+2,...,ay ...
- 攻防世界 杂项 10.2017_Dating_in_Singapore
题目描述: 01081522291516170310172431-050607132027262728-0102030209162330-02091623020310090910172423-0201 ...
- yum history使用详解(某次为解决误卸载软件的回退实验)
[root@localhost ~]# yum history list #查看历史 Loaded plugins: fastestmirror ID | Command line | Date an ...
- Python AttributeError: module 'string' has no attribute 'atoi'
python2 中可以用string.atoi 在python3中会报错 替换的方案是 string.atoi(your_str) 替换为 int(your_str) 这个代码python2和pyth ...
- LINUX系统新增及自动挂载硬盘-九五小庞
Linux系统下,添加新硬盘后,自动挂载的方法 1,列出所有硬盘,找到需要挂载的硬盘,例如/dev/vdb.输入: fdisk -l 2,查看硬盘是不是已经被挂载.一个硬盘不能重复挂载,已经挂 ...
- Linux&C 线程控制 课后习题
Q1:多线程与多进程相比有什么优势? 多进程程序耗费的资源大,因为fork()的时候子进程需要继承父进程的几乎所有东西,但是多线程程序线程只继承一部分,即自己的私有数据,例如自己的线程ID,一组寄存器 ...
- Python打包成exe,文件太大问题解决办法
Python打包成exe,文件太大问题解决办法 原因 解决办法 具体步骤 情况一:初次打包 情况二:再次打包 原因 由于使用pyinstaller打包.py文件时,会把很多已安装的无关库同时打包进去, ...
- Unity——技能系统(二)
Unity技能系统(二) Unity技能系统(一) Demo展示: 五.技能管理和释放 1.CharacterSkillSystem 技能系统类,给外部(技能按钮,按键)提供技能释放方法: 技能释放逻 ...