1. Manacher

忘光了,忘光了。

首先将字符串所有字符之间(包括头尾)插入相同分隔符,再在最前方插入另一个分隔符防止越界。

设以 \(s_i\) 为对称中心的回文串中,最长的回文半径为 \(p_i\)。记录在所有遍历过的位置中(\(1\sim i-1\)),以任意一个点为对称中心的回文串的右端点最大值 \(r\),即 \(r=\max_{j=1}^{i-1}s_j+p_j-1\),记 \(d\) 即为取到这个最大值的对称中心。注意 \(r\) 和 \(d\) 是实时更新的

对于当前位置 \(i\):

  • 若 \(i>r\),则暴力求 \(p_i\),此时每次扩展都会将 \(r\) 向右移动 \(1\)

  • 若 \(i\leq r\),则先将 \(p_i\) 赋值为 \(\min(r-i+1,p_{2d-i})\),再逐位扩展。

    说明:因为位置 \(2d-i\) 与 \(i\) 是对称的(在 \(d\) 的最长回文半径范围内),所以在 \([d-p_d+1,d+p_d-1\ (r)]\) 范围内,\(2d-i\) 的回文串也是 \(i\) 的回文串。若 \(p_{2d-i}<r-i+1\),那么根据对称性,\(p_i\) 的最终值就等于 \(p_{2d-i}\)。否则 \(p_i=r-i+1\),每次扩展都会将 \(r\) 向右移动 \(1\)

综上,总时间复杂度为 \(\mathcal{O}(n)\)。

回文字符串 Manacher的更多相关文章

  1. 最长回文字符串(manacher算法)

    偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid. 题目描述:      回文串就是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串. ...

  2. 第5题 查找字符串中的最长回文字符串---Manacher算法

    转载:https://www.felix021.com/blog/read.php?2040 首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一 ...

  3. 【转载】最长回文字符串(manacher算法)

    原文转载自:http://blog.csdn.net/lsjseu/article/details/9990539 偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid ...

  4. 最长子回文字符串(Manacher’s Algorithm)

    # # 大佬博客: https://www.cnblogs.com/z360/p/6375514.html https://blog.csdn.net/zuanfengxiao/article/det ...

  5. hdu3068 求一个字符串中最长回文字符串的长度 Manacher算法

    最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. Manacher算法:求解最长回文字符串,时间复杂度为O(N)

    原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...

  7. [LeetCode] Valid Palindrome 验证回文字符串

    Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignori ...

  8. hdu----(3068)最长回文(manacher)

    最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

随机推荐

  1. SpringCloud微服务实战——搭建企业级开发框架(二):环境准备

    这里简单说明一下在Windows系统下开发SpringCloud项目所需要的的基本环境,这里只说明开发过程中基础必须的软件,其他扩展功能(Docker,k8s,MinIO,XXL-JOB,EKL,Ke ...

  2. docker逃逸漏洞复现(CVE-2019-5736)

    漏洞概述 2019年2月11日,runC的维护团队报告了一个新发现的漏洞,SUSE Linux GmbH高级软件工程师Aleksa Sarai公布了影响Docker, containerd, Podm ...

  3. QG-2019-AAAI-Improving Neural Question Generation using Answer Separation

    Improving Neural Question Generation using Answer Separation 本篇是2019年发表在AAAI上的一篇文章.该文章在基础的seq2seq模型的 ...

  4. Alpha阶段发布声明

    发布声明 Alpha 1.Alpha版本功能说明 功能列表和详情图 模块 功能 展示 首页 查看首页博文,搜索博文,可供未登录用户使用 动态 查看推荐动态给未登录用户使用,登录用户可以查看关注动态.我 ...

  5. [技术博客] 敏捷软工——JavaScript踩坑记

    [技术博客] 敏捷软工--JavaScript踩坑记 一.一个令人影响深刻的坑 1.脚本语言的面向对象 面向对象特性是现代编程语言的基本特性,JavaScript中当然集成了面向对象特性.但是Java ...

  6. Ruby on Rails 单元测试

    Ruby on Rails 单元测试 为什么要写测试文件? 软件开发中,一个重要的环节就是编写测试文件,对代码进行单元测试,确保程序各部分功能执行正确.但是,这一环节很容易被我们轻视,认为进行单元测试 ...

  7. BUAA 软件工程个人作业

    BUAA 软件工程 个人项目作业 Author: 17373015 乔玺华 教学班级 :005 项目地址:https://github.com/JordenQiao/SE_Homework_Perso ...

  8. 洛谷 P4555 [国家集训队]最长双回文串

    链接: P4555 题意: 在字符串 \(S\) 中找出两个相邻非空回文串,并使它们长度之和最大. 分析: 直接使用马拉车算法求出每个点扩展的回文串.如果枚举两个回文串显然会超时,我们考虑切割一个长串 ...

  9. 算法:杨辉三角(Pascal's Triangle)

    一.杨辉三角介绍 杨辉三角形,又称帕斯卡三角形.贾宪三角形.海亚姆三角形.巴斯卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的<详解九章算法>得名,书中杨辉说明是引自贾 ...

  10. jQuery实现打开网页自动弹出遮罩层或点击弹出遮罩层功能示例

    本文实例讲述了jQuery实现打开网页自动弹出遮罩层或点击弹出遮罩层功能.分享给大家供大家参考,具体如下: 弹出层:两种方式 一是打开网页就自动弹出层二是点击弹出 <!DOCTYPE html ...