python高级之多进程

本节内容

  1. 多进程概念
  2. Process类
  3. 进程间通讯
  4. 进程同步
  5. 进程池

1.多进程概念

multiprocessing is a package that supports spawning processes using an API similar to the threading module. The multiprocessing package offers both local and remote concurrency,effectively side-stepping the Global Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing module allows the programmer to fully leverage multiple processors on a given machine. It runs on both Unix and Windows.

由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。

但在使用这些共享API的时候,我们要注意以下几点:

  • 在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。

  • multiprocessing提供了threading包中没有的IPC(比如Pipe和Queue),效率上更高。应优先考虑Pipe和Queue,避免使用Lock/Event/Semaphore/Condition等同步方式 (因为它们占据的不是用户进程的资源)。

  • 多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。

Process.PID中保存有PID,如果进程还没有start(),则PID为None。

window系统下,需要注意的是要想启动一个子进程,必须加上那句if name == "main",进程相关的要写在这句下面。

函数式调用:

 from multiprocessing import Process
import time
def f(name):
time.sleep(1)
print('hello', name,time.ctime()) if __name__ == '__main__':
p_list=[]
for i in range(3):
p = Process(target=f, args=('alvin',))
p_list.append(p)
p.start()
for i in p_list:
p.join()
print('end')

继承式调用:

 from multiprocessing import Process
import time class MyProcess(Process):
def __init__(self):
super(MyProcess, self).__init__()
#self.name = name def run(self):
time.sleep(1)
print ('hello', self.name,time.ctime()) if __name__ == '__main__':
p_list=[]
for i in range(3):
p = MyProcess()
p.start()
p_list.append(p) for p in p_list:
p.join() print('end')

获取进程PID及父进程PID

 from multiprocessing import Process
import os
import time
def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid()) def f(name):
info('\033[31;1mfunction f\033[0m')
print('hello', name) if __name__ == '__main__':
info('\033[32;1mmain process line\033[0m')
time.sleep(100)
p = Process(target=info, args=('bob',))
p.start()
p.join()

2.Process类

构造方法:

Process([group [, target [, name [, args [, kwargs]]]]])

  • group: 线程组,目前还没有实现,库引用中提示必须是None;
  • target: 要执行的方法;
  • name: 进程名;
  • args/kwargs: 要传入方法的参数。

实例方法:

  • is_alive():返回进程是否在运行。
  • join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
  • start():进程准备就绪,等待CPU调度
  • run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
  • terminate():不管任务是否完成,立即停止工作进程

属性:

  • authkey
  • daemon:和线程的setDeamon功能一样
  • exitcode(进程在运行时为None、如果为–N,表示被信号N结束)
  • name:进程名字。
  • pid:进程号。

例子:

 import time
from multiprocessing import Process def foo(i):
time.sleep(1)
print (p.is_alive(),i,p.pid)
time.sleep(1) if __name__ == '__main__':
p_list=[]
for i in range(10):
p = Process(target=foo, args=(i,))
#p.daemon=True
p_list.append(p) for p in p_list:
p.start()
# for p in p_list:
# p.join() print('main process end')

3.进程间通讯

不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以用以下方法:

Queues

使用方法跟threading里的queue类似:

 from multiprocessing import Process, Queue

 def f(q,n):
q.put([42, n, 'hello']) if __name__ == '__main__':
q = Queue()
p_list=[]
for i in range(3):
p = Process(target=f, args=(q,i))
p_list.append(p)
p.start()
print(q.get())
print(q.get())
print(q.get())
for i in p_list:
i.join()

Pipes

The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex (two-way).

pipe函数返回一对连接对象,使用管道,默认是双工模式

For example:

 from multiprocessing import Process, Pipe

 def f(conn):
conn.send([42, None, 'hello'])
conn.close() if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv()) # prints "[42, None, 'hello']"
p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection object has send() and recv() methods (among others). Note that data in a pipe may become corrupted if two processes (or threads) try to read from or write to the same end of the pipe at the same time. Of course there is no risk of corruption from processes using different ends of the pipe at the same time.

pipe会返回两个连接对象代表终端连接的两个进程。每个连接对象都有send和recv方法。如果两个进程在同一时刻读取数据或者写入数据,将会破坏这个管道。当然,在进程中同时使用同一个pipe的不同终端是不会有这个风险的。。。(无法理解)

Managers A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array. For example,

 from multiprocessing import Process, Manager

 def f(d, l,n):
d[n] = ''
d[''] = 2
d[0.25] = None
l.append(n)
print(l) if __name__ == '__main__':
with Manager() as manager:
d = manager.dict() l = manager.list(range(5))
p_list = []
for i in range(10):
p = Process(target=f, args=(d, l,i))
p.start()
p_list.append(p)
for res in p_list:
res.join() print(d)
print(l)

4.进程同步

进程同步也可以使用lock实现,不过这个lock是在multiprocessing模块中的。

例子:

 from multiprocessing import Process, Lock

 def f(l, i):
l.acquire()
try:
print('hello world', i)
finally:
l.release() if __name__ == '__main__':
lock = Lock() for num in range(10):
Process(target=f, args=(lock, num)).start()

5.进程池

进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

进程池中有两个方法:

  • apply # 一个一个执行子进程
  • apply_async # 并发执行子进程

示例:

 from  multiprocessing import Process,Pool
import time def Foo(i):
time.sleep(2)
return i+100 def Bar(arg):
print('-->exec done:',arg) pool = Pool(5) for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)
#pool.apply(func=Foo, args=(i,)) print('end')
pool.close()
pool.join()

python高级之多进程的更多相关文章

  1. 第八篇:python高级之多进程

    python高级之多进程   python高级之多进程 本节内容 多进程概念 Process类 进程间通讯 进程同步 进程池 1.多进程概念 multiprocessing is a package ...

  2. Python高级编程-多进程

    要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识. Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回 ...

  3. 第十章:Python高级编程-多线程、多进程和线程池编程

    第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...

  4. python高级之网络编程

    python高级之网络编程 本节内容 网络通信概念 socket编程 socket模块一些方法 聊天socket实现 远程执行命令及上传文件 socketserver及其源码分析 1.网络通信概念 说 ...

  5. 第六篇:python高级之网络编程

    python高级之网络编程   python高级之网络编程 本节内容 网络通信概念 socket编程 socket模块一些方法 聊天socket实现 远程执行命令及上传文件 socketserver及 ...

  6. 搞定python多线程和多进程

    1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...

  7. python多线程和多进程

    1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...

  8. Python中使用多进程来实现并行处理的方法小结

    进程和线程是计算机软件领域里很重要的概念,进程和线程有区别,也有着密切的联系,先来辨析一下这两个概念: 1.定义 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和 ...

  9. Python 多线程、多进程 (二)之 多线程、同步、通信

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

随机推荐

  1. Combobox的使用

    第一次写博客,只是对自己在工作中遇到的问题进行一次总结回顾,为以后有同样的错误有一个参考: 由于最近空余时间很少,只是零零散散的把平时记录的笔记搬到博客园而已,博客中可能出现一些低级错误,希望互相学习 ...

  2. (原)3.2 Zookeeper应用 - 数据的发布与订阅

    本文为原创文章,转载请注明出处,谢谢 数据的发布与订阅 1.应用 服务端监听数据改变,客户端创建/更新节点数据,客户端提供数据,服务端处理 2.原理 客户端监控节点数据改变事件(例如配置信息,下图的c ...

  3. H5与CS3权威上.5 绘制图形(1)

    1.canvas元素基础知识 (1)在页面上放置canvas元素,相当于在页面上放置一块"画布",可以用Javascript编写在其中进行绘画的脚本. (2)在页面中放置canva ...

  4. 【单页应用】全局控制器app应该干些什么?

    前言 之前,我们形成了页面片相关的mvc结构,但是该结构还仅适用于view(页面)级,那么真正的全局控制器app应该干些什么事情呢?我觉得至少需要干这些: 功能点 ① 提供URL解析机制,以便让控制器 ...

  5. 征友记之---前端开发Partner

                                                       简单自述下: 本人前端开发者,深圳一公司在职员工,非出自前端科班,乃自学前端已近两年之久. 受前端 ...

  6. 关于SharePoint 2013的工作流(一)

    从去年开始,一直和SharePoint 2013工作流打交道.自己瞎摸索,以实现功能为目的.直到如今也不知道走的路是否正确. 一开始用WF4发现整个都不一样了,用的xaml无法写后端代码.Google ...

  7. android常犯错误记录

    错误:Error:Error: Found item Attr/border_width more than one time 这个容易,属性相同了,按照提示查询一下找出来删了就行了,注意大小写很容易 ...

  8. Android自定义ViewGroup,实现自动换行

    学习<Android开发艺术探索>中自定义ViewGroup章节 自定义ViewGroup总结的知识点 一.自定义ViewGroup中,onMeasure理解 onMeasure(int ...

  9. 协调者布局:CoordinatorLayout

    layout_scrollFlag属性: scroll:需要哪个View滚动就需要设置该属性: exitUntilCollapsed:向上推动屏幕的时候滑动的部分折叠起来,只有下滑到最低端的时候折叠部 ...

  10. [C#6] 5-自动属性增强

    0. 目录 C#6 新增特性目录 1. 老版本代码 internal class Person { public string Name { get; private set; } public in ...