Tensor:Pytorch神经网络界的Numpy
摘要:Tensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。
本文分享自华为云社区《Tensor:Pytorch神经网络界的Numpy》,作者: 择城终老 。
Tensor
Tensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。
但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。
对于Tensor,从接口划分,我们大致可分为2类:
- torch.function:如torch.sum、torch.add等。
- tensor.function:如tensor.view、tensor.add等。
而从是否修改自身来划分,会分为如下2类:
- 不修改自身数据,如x.add(y),x的数据不变,返回一个新的Tensor。
- 修改自身数据,如x.add_(y),运算结果存在x中,x被修改。
简单的理解就是方法名带不带下划线的问题。
现在,我们来实现2个数组对应位置相加,看看其效果就近如何:
import torch x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
print(x + y)
print(x.add(y))
print(x)
print(x.add_(y))
print(x)
运行之后,效果如下:
下面,我们来正式讲解Tensor的使用方式。
创建Tensor
与Numpy一样,创建Tensor也有很多的方法,可以自身的函数进行生成,也可以通过列表或者ndarray进行转换,同样也可以指定维度等。具体方法如下表(数组即张量):
这里需要注意Tensor有大写的方法也有小写的方法,具体效果我们先来看看代码:
import torch t1 = torch.tensor(1)
t2 = torch.Tensor(1)
print("值{0},类型{1}".format(t1, t1.type()))
print("值{0},类型{1}".format(t2, t2.type()))
运行之后,效果如下:
其他示例如下:
import torch
import numpy as np t1 = torch.zeros(1, 2)
print(t1)
t2 = torch.arange(4)
print(t2)
t3 = torch.linspace(10, 5, 6)
print(t3)
nd = np.array([1, 2, 3, 4])
t4 = torch.from_numpy(nd)
print(t4)
其他例子基本与上面基本差不多,这里不在赘述。
修改Tensor维度
同样的与Numpy一样,Tensor一样有维度的修改函数,具体的方法如下表所示:
示例代码如下所示:
import torch t1 = torch.Tensor([[1, 2]])
print(t1)
print(t1.size())
print(t1.dim())
print(t1.view(2, 1))
print(t1.view(-1))
print(torch.unsqueeze(t1, 0))
print(t1.numel())
运行之后,效果如下:
截取元素
当然,我们创建Tensor张量,是为了使用里面的数据,那么就不可避免的需要获取数据进行处理,具体截取元素的方式如表:
示例代码如下所示:
import torch # 设置随机数种子,保证每次运行结果一致
torch.manual_seed(100)
t1 = torch.randn(2, 3)
# 打印t1
print(t1)
# 输出第0行数据
print(t1[0, :])
# 输出t1大于0的数据
print(torch.masked_select(t1, t1 > 0))
# 输出t1大于0的数据索引
print(torch.nonzero(t1))
# 获取第一列第一个值,第二列第二个值,第三列第二个值为第1行的值
# 获取第二列的第二个值,第二列第二个值,第三列第二个值为第2行的值
index = torch.LongTensor([[0, 1, 1], [1, 1, 1]])
# 取0表示以行为索引
a = torch.gather(t1, 0, index)
print(a)
# 反操作填0
z = torch.zeros(2, 3)
print(z.scatter_(1, index, a))
运行之后,效果如下:
我们a = torch.gather(t1, 0, index)对其做了一个图解,方便大家理解。如下图所示:
当然,我们直接有公司计算,因为这么多数据标线实在不好看,这里博主列出转换公司供大家参考:
当dim=0时,out[i,j]=input[index[i,j]][j]
当dim=1时,out[i,j]=input[i][index[i][j]]
简单的数学运算
与Numpy一样,Tensor也支持数学运算。这里,博主列出了常用的数学运算函数,方便大家参考:
需要注意的是,上面表格所有的函数操作均会创建新的Tensor,如果不需要创建新的,使用这些函数的下划线"_"版本。
示例如下:
t = torch.Tensor([[1, 2]])
t1 = torch.Tensor([[3], [4]])
t2 = torch.Tensor([5, 6])
# t+0.1*(t1/t2)
print(torch.addcdiv(t, 0.1, t1, t2))
# t+0.1*(t1*t2)
print(torch.addcmul(t, 0.1, t1, t2))
print(torch.pow(t,3))
print(torch.neg(t))
运行之后,效果如下:
上面的这些函数都很好理解,只有一个函数相信没接触机器学习的时候,不大容易理解。也就是sigmoid()激活函数,它的公式如下:
归并操作
简单的理解,就是对张量进行归并或者说合计等操作,这类操作的输入输出维度一般并不相同,而且往往是输入大于输出维度。而Tensor的归并函数如下表所示:
示例代码如下所示:
t = torch.Tensor([[1, 2]])
t1 = torch.Tensor([[3], [4]])
t2 = torch.Tensor([5, 6])
# t+0.1*(t1/t2)
print(torch.addcdiv(t, 0.1, t1, t2))
# t+0.1*(t1*t2)
print(torch.addcmul(t, 0.1, t1, t2))
print(torch.pow(t,3))
print(torch.neg(t))
运行之后,效果如下:
需要注意的是,sum函数求和之后,dim的元素个数为1,所以要被去掉,如果要保留这个维度,则应当keepdim=True,默认为False。
比较操作
在量化交易中,我们一般会对股价进行比较。而Tensor张量同样也支持比较的操作,一般是进行逐元素比较。具体函数如下表:
示例代码如下所示:
t = torch.Tensor([[1, 2]])
t1 = torch.Tensor([[3], [4]])
t2 = torch.Tensor([5, 6])
# t+0.1*(t1/t2)
print(torch.addcdiv(t, 0.1, t1, t2))
# t+0.1*(t1*t2)
print(torch.addcmul(t, 0.1, t1, t2))
print(torch.pow(t,3))
print(torch.neg(t))
运行之后,输出如下:
矩阵运算
机器学习与深度学习中,存在大量的矩阵运算。与Numpy一样常用的矩阵运算一样,一种是逐元素相乘,一种是点积乘法。函数如下表所示:
这里有3个主要的点积计算需要区分,dot()函数只能计算1维张量,mm()函数只能计算二维的张量,bmm只能计算三维的矩阵张量。示例如下:
# 计算1维点积
a = torch.Tensor([1, 2])
b = torch.Tensor([3, 4])
print(torch.dot(a, b))
# 计算2维点积
a = torch.randint(10, (2, 3))
b = torch.randint(6, (3, 4))
print(torch.mm(a, b))
# 计算3维点积
a = torch.randint(10, (2, 2, 3))
b = torch.randint(6, (2, 3, 4))
print(torch.bmm(a, b))
运行之后,输出如下:
Tensor:Pytorch神经网络界的Numpy的更多相关文章
- pytorch神经网络解决回归问题(非常易懂)
对于pytorch的深度学习框架,在建立人工神经网络时整体的步骤主要有以下四步: 1.载入原始数据 2.构建具体神经网络 3.进行数据的训练 4.数据测试和验证 pytorch神经网络的数据载入,以M ...
- PyTorch 神经网络
PyTorch 神经网络 神经网络 神经网络可以通过 torch.nn 包来构建. 现在对于自动梯度(autograd)有一些了解,神经网络是基于自动梯度 (autograd)来定义一些模型.一个 n ...
- PyTorch神经网络集成技术
PyTorch神经网络集成技术 create_python_neuropod 将任意python代码打包为一个neurood包. create_python_neuropod( neuropod_pa ...
- 使用Google-Colab训练PyTorch神经网络
Colaboratory 是免费的 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.关键是还有免费的GPU可以使用!用Colab训练PyTorch神经网络步骤如下: 1: ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- 2.Tensor Shape《Pytorch神经网络高效入门教程》Deeplizard
,之后,我们张量和基础数据的形状酱油卷积运算来改变. 卷积改变了高度和宽度维度以及颜色通道的数量.
- pytorch神经网络实现的基本步骤
转载自:https://blog.csdn.net/dss_dssssd/article/details/83892824 版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载 ...
- pytorch之 compare with numpy
import torch import numpy as np # details about math operation in torch can be found in: http://pyto ...
- PyTorch学习笔记6--案例2:PyTorch神经网络(MNIST CNN)
上一节中,我们使用autograd的包来定义模型并求导.本节中,我们将使用torch.nn包来构建神经网络. 一个nn.Module包含各个层和一个forward(input)方法,该方法返回outp ...
随机推荐
- 手把手教你实现一个支持插件化的 uTools 工具箱(一)
前言 对于前端同学来说,我们会经常用到各种小工具,比如:图床.颜色拾取.二维码生成器.url 管理.文本比对.json 格式化.当然我们可以 chrome 收藏夹来管理各种在线的小工具,但作为一个有追 ...
- Redis之集群
Redis Cluster是 Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求.当遇到单机内存.并发.流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的 ...
- 腾讯云TKE-基于 Cilium 统一混合云容器网络(下)
前言 在 腾讯云TKE - 基于 Cilium 统一混合云容器网络(上) 中,我们介绍 TKE 混合云的跨平面网络互通方案和 TKE 混合云 Overlay 网络方案.公有云 TKE 集群添加第三方 ...
- 数学:3D和矩阵
跟紧工作需求学习,于是抽了点时间看了看用于2D3D转换的矩阵内容. 矩阵在3D数学中,可以用来描述两个坐标系间 的关系,通过定义的运算能够把一个坐标系中的向量转换到另一个坐标系中.在线性代数中,矩阵就 ...
- To_Heart—题解——AT2165
这是一篇解题报告 首先,看到标签,考虑二分答案. 我们二分答案(即塔顶的值),把大于或等于这个值的变为1,否则变为0. 很容易发现,如果塔顶的答案是1,那么就说明值可以更大,否则相反. 复制一波样例 ...
- as3.0 Flex 图像处理
as3.0 Flex 图像处理 已知的一些图像处理,主要是得到颜色过滤矩阵,不完整,大家一起来补充. //颜色转换数组,所有的0都是可调值public var colorArray:Array = [ ...
- uniapp 微信小程序 打开文件
uni.downloadFile({ url: item.url, success: (res) => { if (res.statusCode === 200) { uni.openDocum ...
- 通过PLSQL创建Database link,DBMS_Job,Procedure,实现Oracle跨库传输数据
前一阵领导安排了一个任务:定时将集团数据库某表的数据同步至我们公司服务器的数据库,感觉比写增删改查SQL有趣,特意记录下来,希望能帮到有类似需求的小伙伴,如有错误也希望各位不吝指教 环境描述: 集团数 ...
- ES6 箭头函数你正确使用了吗
ES6 箭头函数你正确使用了吗 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 说明 在ES6中允许使用"箭头&quo ...
- 用EXCEL打开CSV文件
1.打开EXCEL 2.数据--自文本--选择对应的CSV文件 3.设置表头所在的行(例如17行为表头)则输入17 4.确定分隔符 5.单击"确定"即可