CF285D. Permutation Sum

题目

大意

寻找a,b两个排列从0到n-1,有c[i]=(a[i]+b[i])%n+1,使得c[i]也为全排列的排列方式

思路

a中元素和b中元素的对应方式不同,c数组也不同,且a和b此时全排列方式各有n!种。

可以先固定a中的数,从0到n-1,再dfs搜索b与之相应匹配的值,当然时间消耗会很大(求解n=15大概在五分钟左右)

再看题目条件,n最大到16,所以可以考虑打表方法,获取全部的值。

求解出来的答案再考虑a数组本身的全排列,且b随之对应排列,故需乘上n!

代码

首先打表:

#include<iostream>
#include<cstring>
using namespace std;
int a[20],b[20];
int sign[20];
int count;
void dfs(int now, int num) {
if(now == num) {
count++;
return;
}
for(int i=0;i<num;i++) {
if(b[i]) { // b[i]已经使用过,忽略
continue;
}
int c = (a[now]+i)%num+1;
if(sign[c]) { // c不构成全排列,忽略
continue;
}
sign[c]=1;
b[i]=1;
dfs(now+1, num);
sign[c]=0;
b[i]=0;
}
}
int main() {
for(int i=0;i<16;i++) {
a[i] = i;
}
// a固定下来,b逐个dfs过去
for(int i=0;i<16;i++) {
count = 0;
memset(sign, 0, sizeof(sign));
memset(b, 0, sizeof(b));
dfs(0, i+1);
cout << "num=" << i+1 << ' ' << "count=" << count << endl;
}
}

于是获取到:

num=1 count=1
num=2 count=0
num=3 count=3
num=4 count=0
num=5 count=15
num=6 count=0
num=7 count=133
num=8 count=0
num=9 count=2025
num=10 count=0
num=11 count=37851
num=12 count=0
num=13 count=1030367
num=14 count=0
num=15 count=36362925

所以可以提交代码了:

#include<iostream>
using namespace std;
long long int a[17],b[17];
int mod = int(1e9)+7;
int main() {
a[1]=1;
a[3]=3;
a[5]=15;
a[7]=133;
a[9]=2025;
a[11]=37851;
a[13]=1030367;
a[15]=36362925;
b[1]=1;
for(int i=2;i<=16;i++) {
b[i] = (b[i-1] * i) % mod;
}
long long int n;
cin >> n;
cout << a[n]*b[n]%mod;
}

CF285D.D. Permutation Sum的更多相关文章

  1. CF285D.Permutation Sum

    想了很久觉得自己做法肯定T啊,就算是CF机子的3s时限,但我毕竟是 O ( C(15,7)*7!*log ) .... 果然在n=15的点T了...贱兮兮地特判了15过掉了,结果发现题解说就是打表.. ...

  2. codeforces 285 D. Permutation Sum 状压 dfs打表

    题意: 如果有2个排列a,b,定义序列c为: c[i] = (a[i] + b[i] - 2) % n + 1 但是,明显c不一定是一个排列 现在,给出排列的长度n (1 <= n <= ...

  3. SPOJ:Elegant Permuted Sum(贪心)

    Special Thanks: Jane Alam Jan*At moment in University of Texas at San Antonio - USA You will be give ...

  4. Codeforces Round #175 (Div. 2)

    A. Slightly Decreasing Permutations 后\(k\)个倒序放前面,前\(n-k\)个顺序放后面. B. Find Marble 模拟. C. Building Perm ...

  5. Codeforces Round #175 (Div. 2) A~D 题解

    A.Slightly Decreasing Permutations Permutation p is an ordered set of integers p1,  p2,  ...,  pn, c ...

  6. combination sum、permutation、subset(组合和、全排列、子集)

    combination sum I.permutation I.subsets  I 是组合和.全排列.子集的第一种情况,给定数组中没有重复的元素. combination sum II.permut ...

  7. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

  8. 266. Palindrome Permutation

    题目: Given a string, determine if a permutation of the string could form a palindrome. For example,&q ...

  9. Educational Codeforces Round 7 D. Optimal Number Permutation 构造题

    D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...

随机推荐

  1. Python3入门系列之-----环境搭建

    前  言 最近一直在学习Python,想用笔记的方式记录自己踩过的那些坑.俗话说:好记性不如烂笔头. 分享给想学Python的小伙伴.目前本人在学习Python+selenium.接口自动化,有兴趣的 ...

  2. python-matplotlib学习(1)

    1 import matplotlib.pyplot as plt 2 import numpy as np 3 4 x=np.linspace(-1,1,50) 5 y=2*x+1 6 plt.pl ...

  3. MySQL学习总结:提问式回顾 undo log 相关知识

    原文链接:MySQL学习总结:提问式回顾 undo log 相关知识 1.redo 日志支持恢复重做,那么如果是回滚事务中的操作呢,也会有什么日志支持么? 也回滚已有操作,那么就是想撤销,对应的有撤销 ...

  4. Rafy 框架 - 实体支持只更新部分变更的字段

    Rafy 快一两年没有大的更新了.并不是这个框架没人维护了.相反,主要是因为自己的项目.以及公司在使用的项目,都已经比较稳定了,也没有新的功能添加.但是最近因为外面使用了 Rafy 的几个公司,找到我 ...

  5. GoLang设计模式11 - 备忘录模式

    备忘录模式是一种行为型设计模式.这种模式允许我们保存对象在某些关键节点时的必要信息,以便于在适当的时候可以将之恢复到之前的状态.通常它可以用来帮助设计撤销/恢复操作. 下面是备忘录设计模式的主要角色: ...

  6. 好程序员打造核心教培天团,着力培养IT高级研发人才

    随着数字化进程加快,各行各业数字化转型迫在眉睫,技术人才战略成为企业发力重点,IT高级研发人才已经成为企业的"核心资产",对企业发展起关键性作用,然而市场上高级研发人才极为稀缺.据 ...

  7. (课内)信安数基RSA-level3-5

    emmmm感觉其实自己对这个的理解完全不够,原理只能写出这么个东西(悲) 代码完全是 攻击方式中(1)(2)内容的实现. lambda是一种可以理解为匿名函数的写法:写在这里看起来很酷炫(bushi) ...

  8. kivy 选择框

    from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.lang import builder # 注册 ...

  9. .net 5.0 ref文件夹的作用

    ref目录里的dll是一个名为参考组件的东西,微软MSDN给的解释是 参考组件是一种特殊类型的程序集,仅包含表示库的公共API面所需的最小元数据数量.它们包括用于在构建工具中引用程序集时重要的所有成员 ...

  10. filebeat收集日志到elsticsearch中并使用ingest node的pipeline处理

    filebeat收集日志到elsticsearch中 一.需求 二.实现 1.filebeat.yml 配置文件的编写 2.创建自定义的索引模板 3.加密连接到es用户的密码 1.创建keystore ...