Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .

Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1 in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.

is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).

Input

The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

Output

Output on the first line "YES" (without quotes) if it is possible to make sequence A beautiful by performing operations described above, and "NO" (without quotes) otherwise.

If the answer was "YES", output the minimal number of moves needed to make sequence A beautiful.

Example

Input
2
1 1
Output
YES
1
Input
3
6 2 4
Output
YES
0
Input
2
1 3
Output
YES
1

Note

In the first example you can simply make one move to obtain sequence [0, 2] with .

In the second example the gcd of the sequence is already greater than 1.

题意:n个数,n<=1e5,操作:把a[i],a[i+1] 替换成 a[i]-a[i+1],a[i]+a[i+1],问至少要多少次操作才能让整个a数组的最大公约数gcd大于1.

由题目给出操作可知:当gcd(a,b)<=1时,进行操作为:

初始:a  b

第一步:a-b  a+b

第二步:-2b  2a

即两个数最多2步操作就能满足GCD==2。

对于两个偶数,要进行0步操作;对于两个奇数,要进行1步操作;对于一个奇数一个偶数,要进行2步操作。

先把所有“2个奇数成对”的情况计数+1并把两个奇数更新为偶数,然后在重新判断所有“1个奇数1个偶数成对”的情况计数+2。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[200050],n,num=0;
ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
}
int main(){
cin>>n;
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
ll ans=gcd(abs(a[1]),abs(a[2]));
for(int i=3;i<=n;i++)\
ans=gcd(ans,abs(a[i]));
if(ans>1) cout<<"YES"<<endl<<0<<endl;
else
{
for(int i=1;i<n;i++)
if(a[i]%2&&a[i+1]%2)
a[i]=0,a[i+1]=0,num++;
for(int i=1;i<n;i++)
if((a[i]%2&&a[i+1]%2==0)||(a[i]%2==0&&a[i]%2))
a[i]=0,a[i+1]=0,num+=2;
cout<<"YES"<<endl<<num<<endl;
}
return 0;
}

CodeForce-798C Mike and gcd problem(贪心)的更多相关文章

  1. Codeforces 798C - Mike and gcd problem(贪心+数论)

    题目链接:http://codeforces.com/problemset/problem/798/C 题意:给你n个数,a1,a2,....an.要使得gcd(a1,a2,....an)>1, ...

  2. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...

  3. codeforces 798c Mike And Gcd Problem

    题意: 给出一个数列,现在有一种操作,可以任何一个a[i],用a[i] – a[i+1]和a[i]+a[i+1]替代a[i]和a[i+1]. 问现在需要最少多少次操作,使得整个数列的gcd大于1. 思 ...

  4. codeforces 798C.Mike and gcd problem 解题报告

    题目意思:给出一个n个数的序列:a1,a2,...,an (n的范围[2,100000],ax的范围[1,1e9] ) 现在需要对序列a进行若干变换,来构造一个beautiful的序列: b1,b2, ...

  5. CF798 C. Mike and gcd problem

    /* CF798 C. Mike and gcd problem http://codeforces.com/contest/798/problem/C 数论 贪心 题意:如果一个数列的gcd值大于1 ...

  6. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

  7. Codeforces Round #410 (Div. 2)C. Mike and gcd problem

    题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...

  8. codeforces#410C Mike and gcd problem

    题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...

  9. #410div2C. Mike and gcd problem

    C. Mike and gcd problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  10. Mike and gcd problem CodeForces - 798C (贪心思维+数论)

    题目链接 比较棒的一道题, 题意: 给你一个N个数的数组,让你用尽量少的操作使整个数组的gcd大于1,即gcd(a1 ,a2,,,,an) > 1 如果可以输出YES和最小的次数,否则输出NO ...

随机推荐

  1. PAT甲级 1112 Stucked Keyboard

    题目链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805357933608960 这道题初次写的时候,思路也就是考虑 ...

  2. CobaltStrike4.0——渗透神器

    CobaltStrike4.0--渗透神器 Cobaltstrike简介 Cobalt Strike是一款美国Red Team开发的渗透测试神器,常被业界人称为CS,其拥有多种协议主机上线方式,集成了 ...

  3. Golang语言系列-13-常用内置包

    常用内置包 net/http包 http请求和响应 http服务端 main.go文件 package main import ( "fmt" "io/ioutil&qu ...

  4. 问题求解与程序设计(C重新回顾:个人版)一

    一.容易遗忘之转义字符 转义序列 含义 \n 换行 \t 水平制表 \\ 输出反斜杠 \a 响铃符 \'' 输出双引号 \' 输出单引号 \? 输出问号 \r 输出回车符(不换行,光标定位当前行的开始 ...

  5. 安全工具推荐之Goby篇

    Goby(鰕虎鱼) 这个东西出来也很久了,有一年多了吧,个人感觉用起来还不错(当然见仁见智哈,别喷我),今天拿来水一篇 官网有很详细的使用说明,所以本文纯属发表一下感慨,非技术贴 官网在此:https ...

  6. Linux下库的制作(静态库与共享库)

    库中实际上就是已编译好的函数代码,可以被程序直接调用. Linux下的库一般的位置在/lib或者/usr/lib中 静态库 静态库是复制拷贝到调用函数中的,函数运行的时候不再需要静态库,因为静态库是在 ...

  7. Longhorn,企业级云原生容器分布式存储 - K8S 资源配置示例

    内容来源于官方 Longhorn 1.1.2 英文技术手册. 系列 Longhorn 是什么? Longhorn 企业级云原生容器分布式存储解决方案设计架构和概念 Longhorn 企业级云原生容器分 ...

  8. SQL 练习19

    统计各科成绩各分数段人数:课程编号,课程名称,[100-85],[85-70],[70-60],[60-0] SELECT Course.CId,Course.Cname ,t.[0-60],t.[6 ...

  9. NOIP 模拟 $22\; \rm d$

    题解 很好的贪心题 考虑去掉的矩形一定是几个 \(a\) 最小的,几个 \(b\) 最小的,枚举去掉几个 \(a\),剩下的去掉 \(b\) 先对 \(a\) 排序,用小根堆维护 \(b\) ,记录哪 ...

  10. 【springboot】过滤器、监听器、拦截器,Aspect切片

    转自: https://blog.csdn.net/cp026la/article/details/86501019 简介: 本章介绍拦截器.过滤器.切片对请求拦截的使用与区别,以及监听器在 spri ...