剑指 Offer 33. 二叉搜索树的后序遍历序列

输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。

参考以下这颗二叉搜索树:

     5
/ \
2 6
/ \
1 3

示例 1:

输入: [1,6,3,2,5]
输出: false

示例 2:

输入: [1,3,2,6,5]
输出: true

提示:

  • 数组长度 <= 1000

解题思路:

解题之前,要先明晰一些基本概念。

  • 后序遍历定义: [ 左子树 | 右子树 | 根节点 ] ,即遍历顺序为 “左、右、根” 。
  • 二叉搜索树定义: 左子树中所有节点的值 << 根节点的值;右子树中所有节点的值 >> 根节点的值;其左、右子树也分别为二叉搜索树。

递归思路

个人当初做这道题的思路如下:

首先想到划分左右子树,然后再判断是否为二叉搜索树。

在判断左右子树的时候,设置一个temp依次遍历完整左子树,然后等大于根节点的树的时候直接break。

然后再创建rightTreeNode再遍历右子树,如果最后postorder[i]等于根节点的树,遍历结束。

最后在判断rightTreeNode与end是否相同,且要用&&,必须使rightTreeNode == end、recur(postorder,start,temp)、recur(postorder,temp + 1,end - 1)都是true才能返回。

class Solution {
public boolean verifyPostorder(int[] postorder) {
return recur(postorder,0,postorder.length - 1);
}
boolean recur(int[] postorder, int start, int end){
if(start >= end) return true;
int temp = start;
// 找到右子树结点第一次出现的地方。(或者说是遍历完整棵左子树)
for(int i = start; i <= end; ++i){
if(postorder[i] < postorder[end]){
temp = i;
}
else break;
}
int rightTreeNode = temp + 1; // 后序遍历右子树时会访问的第一个结点的下标。
// 验证右子树所有结点是否都大于根结点。
for(int i = rightTreeNode; i <= end; ++i){
if(postorder[i] > postorder[end])
++rightTreeNode;
}
return rightTreeNode == end && recur(postorder,start,temp) && recur(postorder,temp + 1,end - 1);
}
}

这个是K神更为简洁的代码的算法思路:

  • 终止条件:当i>=j时候,说明此子树的节点数量小于<=1,则直接返回true即可

  • 递推工作:

    1. 划分左右子树: 遍历后序遍历的 [i, j][i,j] 区间元素,寻找 第一个大于根节点 的节点,索引记为 m。此时,可划分出左子树区间 [i,m-1][i,m−1] 、右子树区间 [m, j - 1][m,j−1] 、根节点索引 jj 。

    2. 判断是否为二叉搜索树:

      左子树区间 [i, m - 1][i,m−1] 内的所有节点都应 << postorder[j]。而第 1.划分左右子树 步骤已经保证左子树区间的正确性,因此只需要判断右子树区间即可。

      右子树区间 [m, j-1][m,j−1] 内的所有节点都应 >> postorder[j]。实现方式为遍历,当遇到 ≤postorder[j] 的节点则跳出;则可通过 p = j判断是否为二叉搜索树。

  • 返回值: 所有子树都需正确才可判定正确,因此使用 与逻辑符 &&&& 连接。

    p = j: 判断 此树 是否正确。

    recur(i, m - 1): 判断 此树的左子树 是否正确。

    recur(m, j - 1): 判断 此树的右子树 是否正确。

class Solution {
public boolean verifyPostorder(int[] postorder) {
return recur(postorder, 0, postorder.length - 1);
}
boolean recur(int[] postorder, int i, int j) {
if(i >= j) return true;
int p = i;
while(postorder[p] < postorder[j]) p++;
int m = p;
while(postorder[p] > postorder[j]) p++;
return p == j && recur(postorder, i, m - 1) && recur(postorder, m, j - 1);
}
}

参考链接:

https://leetcode-cn.com/problems/er-cha-sou-suo-shu-de-hou-xu-bian-li-xu-lie-lcof/solution/mian-shi-ti-33-er-cha-sou-suo-shu-de-hou-xu-bian-6/

剑指 Offer 33. 二叉搜索树的后序遍历序列的更多相关文章

  1. 剑指 Offer 33. 二叉搜索树的后序遍历序列 + 根据二叉树的后序遍历序列判断对应的二叉树是否存在

    剑指 Offer 33. 二叉搜索树的后序遍历序列 Offer_33 题目详情 题解分析 本题需要注意的是,这是基于一颗二叉排序树的题目,根据排序二叉树的定义,中序遍历序列就是数据从小到大的排序序列. ...

  2. 【Java】 剑指offer(33) 二叉搜索树的后序遍历序列

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如 ...

  3. 每日一题 - 剑指 Offer 33. 二叉搜索树的后序遍历序列

    题目信息 时间: 2019-06-26 题目链接:Leetcode tag:分治算法 递归 难易程度:中等 题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 tr ...

  4. 剑指Offer:二叉搜索树的后序遍历序列【33】

    剑指Offer:二叉搜索树的后序遍历序列[33] 题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. ...

  5. 《剑指offer》二叉搜索树的后序遍历序列

    本题来自<剑指offer> 二叉搜索树的后序遍历序列 题目: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字 ...

  6. 【剑指Offer】二叉搜索树的后序遍历序列 解题报告(Python)

    [剑指Offer]二叉搜索树的后序遍历序列 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-intervi ...

  7. 【剑指offer】二叉搜索树的后序遍历序列

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/26092725 剑指offer上的第24题,主要考察递归思想,九度OJ上AC. 题目描写叙述 ...

  8. Go语言实现:【剑指offer】二叉搜索树的后序遍历序列

    该题目来源于牛客网<剑指offer>专题. 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. Go ...

  9. 剑指Offer 23. 二叉搜索树的后序遍历序列 (二叉搜索树)

    题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 题目地址 https://www.nowcoder ...

随机推荐

  1. Jenkins远程命令执行漏洞(CVE-2018-1000861)

    此漏洞没有回显,直接利用orange的exp执行命令反弹shell 工具地址https://github.com/orangetw/awesome-jenkins-rce-2019 web服务器下写1 ...

  2. Elgamal加密算法和数字签名

    简述:ElGamal公钥密码体制是由 T.ElGamal于 1985年提出的,直到现在仍然是一个安全性能良好的公钥密码体制.该算法既能用于数据加密也能用于数字签名,其安全性依赖于计算有限域上离散对数这 ...

  3. selenium元素定位之 动态id, class元素定位

    1.直接进入正题 如下图, 有些元素每次进入都会刷新, 造成元素无法重复定位 怎么办? "xpath部分属性值"定位方法可以帮到我们 1.包含属性定位 driver.find_el ...

  4. 40k*16 薪,五年Android开发4轮面试拿下腾讯 Offer !(附真题)

    概述 感觉毕业后时间过得真快啊,从16年6月本科毕业入职了一家不大的公司,到现在快五年了,前段时间金三银四想着找一个新的工作,前前后后花了一个多月的时间复习以及面试,前几天拿到了腾讯的offer,想把 ...

  5. 线程的常用知识(包括 Thread/Executor/Lock-free/阻塞/并发/锁等)

    本次内容列表: 1.使用线程的经验:设置名称.响应中断.使用ThreadLocal 2.Executor:ExecutorService和Future 3.阻塞队列:put和take.offer和po ...

  6. 保存Total Commander的列宽

    Total Commander的默认列宽经常显示不全内容,需要手工调整,用"Menu -> Configuration -> Save Position"可以永久保存列 ...

  7. Vue-cli4 唤醒摄像头扫描二维码

    <template> <div class="scan"> <div id="bcid"> <div id=" ...

  8. LinuxDHCP配置

    目录 一.DHCP服务 1.1.了解DHCP服务 1.2.使用DHCP的好处 1.3.DHCP的分配方式 1.4.DHCP的租约过程 客户机请求IP地址 重新登录 更新租约 1.5.使用DHCP动态配 ...

  9. Python日志记录

    官方文档:https://docs.python.org/2/library/logging.html logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为, ...

  10. Python Flask API实现方法-测试开发【提测平台】阶段小结(一)

    微信搜索[大奇测试开],关注这个坚持分享测试开发干货的家伙. 本篇主要是对之前几次分享的阶阶段的总结,温故而知新,况且虽然看起来是一个小模块简单的增删改查操作,但其实涉及的内容点是非常的密集的,是非常 ...