剑指 Offer 33. 二叉搜索树的后序遍历序列
剑指 Offer 33. 二叉搜索树的后序遍历序列
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。
参考以下这颗二叉搜索树:
5
/ \
2 6
/ \
1 3
示例 1:
输入: [1,6,3,2,5]
输出: false
示例 2:
输入: [1,3,2,6,5]
输出: true
提示:
- 数组长度 <= 1000
解题思路:
解题之前,要先明晰一些基本概念。
- 后序遍历定义: [ 左子树 | 右子树 | 根节点 ] ,即遍历顺序为 “左、右、根” 。
- 二叉搜索树定义: 左子树中所有节点的值 << 根节点的值;右子树中所有节点的值 >> 根节点的值;其左、右子树也分别为二叉搜索树。
递归思路
个人当初做这道题的思路如下:
首先想到划分左右子树,然后再判断是否为二叉搜索树。
在判断左右子树的时候,设置一个temp依次遍历完整左子树,然后等大于根节点的树的时候直接break。
然后再创建rightTreeNode再遍历右子树,如果最后postorder[i]等于根节点的树,遍历结束。
最后在判断rightTreeNode与end是否相同,且要用&&,必须使rightTreeNode == end、recur(postorder,start,temp)、recur(postorder,temp + 1,end - 1)都是true才能返回。
class Solution {
public boolean verifyPostorder(int[] postorder) {
return recur(postorder,0,postorder.length - 1);
}
boolean recur(int[] postorder, int start, int end){
if(start >= end) return true;
int temp = start;
// 找到右子树结点第一次出现的地方。(或者说是遍历完整棵左子树)
for(int i = start; i <= end; ++i){
if(postorder[i] < postorder[end]){
temp = i;
}
else break;
}
int rightTreeNode = temp + 1; // 后序遍历右子树时会访问的第一个结点的下标。
// 验证右子树所有结点是否都大于根结点。
for(int i = rightTreeNode; i <= end; ++i){
if(postorder[i] > postorder[end])
++rightTreeNode;
}
return rightTreeNode == end && recur(postorder,start,temp) && recur(postorder,temp + 1,end - 1);
}
}
这个是K神更为简洁的代码的算法思路:
终止条件:当i>=j时候,说明此子树的节点数量小于<=1,则直接返回true即可
递推工作:
划分左右子树: 遍历后序遍历的 [i, j][i,j] 区间元素,寻找 第一个大于根节点 的节点,索引记为 m。此时,可划分出左子树区间 [i,m-1][i,m−1] 、右子树区间 [m, j - 1][m,j−1] 、根节点索引 jj 。
判断是否为二叉搜索树:
左子树区间 [i, m - 1][i,m−1] 内的所有节点都应 << postorder[j]。而第 1.划分左右子树 步骤已经保证左子树区间的正确性,因此只需要判断右子树区间即可。
右子树区间 [m, j-1][m,j−1] 内的所有节点都应 >> postorder[j]。实现方式为遍历,当遇到 ≤postorder[j] 的节点则跳出;则可通过 p = j判断是否为二叉搜索树。
返回值: 所有子树都需正确才可判定正确,因此使用 与逻辑符 &&&& 连接。
p = j: 判断 此树 是否正确。
recur(i, m - 1): 判断 此树的左子树 是否正确。
recur(m, j - 1): 判断 此树的右子树 是否正确。
class Solution {
public boolean verifyPostorder(int[] postorder) {
return recur(postorder, 0, postorder.length - 1);
}
boolean recur(int[] postorder, int i, int j) {
if(i >= j) return true;
int p = i;
while(postorder[p] < postorder[j]) p++;
int m = p;
while(postorder[p] > postorder[j]) p++;
return p == j && recur(postorder, i, m - 1) && recur(postorder, m, j - 1);
}
}
参考链接:
剑指 Offer 33. 二叉搜索树的后序遍历序列的更多相关文章
- 剑指 Offer 33. 二叉搜索树的后序遍历序列 + 根据二叉树的后序遍历序列判断对应的二叉树是否存在
剑指 Offer 33. 二叉搜索树的后序遍历序列 Offer_33 题目详情 题解分析 本题需要注意的是,这是基于一颗二叉排序树的题目,根据排序二叉树的定义,中序遍历序列就是数据从小到大的排序序列. ...
- 【Java】 剑指offer(33) 二叉搜索树的后序遍历序列
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如 ...
- 每日一题 - 剑指 Offer 33. 二叉搜索树的后序遍历序列
题目信息 时间: 2019-06-26 题目链接:Leetcode tag:分治算法 递归 难易程度:中等 题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 tr ...
- 剑指Offer:二叉搜索树的后序遍历序列【33】
剑指Offer:二叉搜索树的后序遍历序列[33] 题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. ...
- 《剑指offer》二叉搜索树的后序遍历序列
本题来自<剑指offer> 二叉搜索树的后序遍历序列 题目: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字 ...
- 【剑指Offer】二叉搜索树的后序遍历序列 解题报告(Python)
[剑指Offer]二叉搜索树的后序遍历序列 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-intervi ...
- 【剑指offer】二叉搜索树的后序遍历序列
转载请注明出处:http://blog.csdn.net/ns_code/article/details/26092725 剑指offer上的第24题,主要考察递归思想,九度OJ上AC. 题目描写叙述 ...
- Go语言实现:【剑指offer】二叉搜索树的后序遍历序列
该题目来源于牛客网<剑指offer>专题. 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. Go ...
- 剑指Offer 23. 二叉搜索树的后序遍历序列 (二叉搜索树)
题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 题目地址 https://www.nowcoder ...
随机推荐
- (opencv09)cv2.getStructuringElement()构造卷积核
(opencv09)cv2.getStructuringElement()构造卷积核 rectkernel = cv2.getStructuringElement(shape, ksize, anch ...
- 本地图片转base64编码
通常获取图片的base64编码都是通过input的上传file属性获取转化,但是有时候需要的是本地图片不经过上传操作,直接拿本地图片转成base64编码就不行了,input上传操作需要人为操作一下,没 ...
- vscode配置及插件
编辑vue时候的用户配置 { "workbench.colorTheme": "Solarized Dark", // 主题 "editor.dete ...
- [源码解析] 机器学习参数服务器ps-lite(2) ----- 通信模块Van
[源码解析] 机器学习参数服务器ps-lite(2) ----- 通信模块Van 目录 [源码解析] 机器学习参数服务器ps-lite(2) ----- 通信模块Van 0x00 摘要 0x01 功能 ...
- UI自动化学习笔记- 日志相关操作
一.日志相关 1.日志 概念:日志就是用于记录系统运行时的信息,对一个事件的记录,也称log 1.1 日志的作用 调试程序 了解系统程序运行的情况,是否正常 系统程序运行故障分析与问题定位 用来做用户 ...
- 电脑桌面与群晖NAS双向实时同步-20210105
电脑桌面与群晖NAS双向实时同步 2021年1月15日星期五 一.购买群晖DS920+网络存储服务器.NEC超轻笔记本电脑(重量小于800克).小米10至尊版安卓智能手机和intel i9 1 ...
- (11)MySQL进阶篇SQL优化(InnoDB锁问题排查与解决)
1.概述 前面章节之所以介绍那么多锁的知识点和示例,其实最终目的就是为了排查与解决死锁的问题,下面我们把之前学过锁知识重温与补充一遍,然后再通过例子演示下如果排查与解决死锁. 2.前期准备 ●数据库事 ...
- MIPS Pwn赛题学习
MIPS Pwn writeup Mplogin 静态分析 mips pwn入门题. mips pwn查找gadget使用IDA mipsrop这个插件,兼容IDA 6.x和IDA 7.x,在ID ...
- Java8新特性(二)之函数式接口
.subTitle { background: rgba(51, 153, 0, 0.66); border-bottom: 1px solid rgba(0, 102, 0, 1); border- ...
- 在Ant脚本中使用时间戳
时间戳在项目自动构建中广泛使用,例如在jar文件的manifest文件中,以及最后zip包的文件名里等,时间戳对应的Ant命令是,这个标签既可以用在一个内部,也可以放在外部用作"全局&quo ...