[数学]高数部分-Part VII 微分方程
Part VII 微分方程
微分方程的概念
- \(F(x,y,{y}',{y}'',...,{y}^{(n)})=0\)
- 阶数一方程中y的最高阶导数的阶数
\(如:ysinx-{y}''=cosx+2就是二阶微分方程,\begin{cases} n=1,一阶\\ n\geq2,高阶 \end{cases}\) - 通解 --- 解中所含独立常数的个数=方程的阶数
一阶微分方程求解-变量可分离型
\(形如\frac{\text{dy}}{\text{dx}}=f(x,y)=g(x)h(y)\Rightarrow\frac{\text{dy}}{\text{h(y)}}=g(x)dx\Rightarrow\int\frac{\text{dy}}{\text{h(y)}}=\int g(x)dx\)
一阶微分方程求解-齐次型
\(形如\frac{\text{dy}}{\text{dx}}=f(\frac{y}{x})\Rightarrow y=ux \Rightarrow {y}'={u}'x+u \Rightarrow {u}'x+u=f(u) \Rightarrow \frac{\text{du}}{\text{dx}}x=f(u)-u \Rightarrow \frac{du}{f(u)-u}=\frac{dx}{x}\Rightarrow \int\frac{du}{f(u)-u}=\int\frac{dx}{x}\)
一阶微分方程求解-一阶线性型
\(形如:{y}'+p(x)y=q(x), p(x),q(x)为已知函数 \Rightarrow y=e^{-\int p(x)dx}(\int e^{\int p(x)dx}q(x)dx+C\)
二阶常系数齐次D.E.求解:\(y''+py'+qy=0\) p,q为常数
- \(写\lambda^2 + p\lambda+q=0 \Rightarrow \triangle=p^2-4q\)
- \(\begin{cases}
\triangle>0 \Rightarrow \lambda_1\neq\lambda_2 \Rightarrow y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} \\
\triangle=0 \Rightarrow \lambda_1=\lambda_2=\lambda \Rightarrow y(C_1+C_2x)e^{kx} \\
\triangle<0 \Rightarrow \lambda_{1,2}=\frac{-p\pm\sqrt{4q-p^2}i}{2}=\alpha\pm\beta i\Rightarrow y=e^{\alpha x}(C_1cos{\beta x})+C_2sin{\beta x})
\end{cases}\)
二阶常系数非齐D.E.求解:\(y''+py'+qy=f(x)\)
- \(f(x) = P_n(x) e^{kx}\)型
- 解法
- 解的结构:\(y_{通解}=y_{齐次通解}+y_{非齐次特解}^*\)
- 求齐次通解:按照前面的方法求出
- 求特解:
- 设\(y^* = e^{kx} Q_n(x)\)(其中\(Q_n(x)\)由\(P_n(x)\)得到)
- 由k与特征方程的根的情况决定是否要在\(y^*\)后面乘上x或\(x^2\)
- \(\lambda _1 \neq k, \lambda_2 \neq k\):设\(y^* = e^{kx} Q_n(x)\)
- \(\lambda _1 = k, \lambda_2 \neq k\):设\(y^* = e^{kx} Q_n(x)\times x\)(多乘一个x)
- \(\lambda _1 = \lambda_2 = k\):设\(y^* = e^{kx} Q_n(x) \times x^2\)(多乘两个x)
- 求出\(y'^*,\ y''^*\),带入原方程,化简,解出待定系数a,b
- 将a,b带入\(y^* = e^{kx} Q_n(x)\),即得特解
- 组合:最后结果为 齐次通解+特解
- 解法
[数学]高数部分-Part VII 微分方程的更多相关文章
- [数学]高数部分-Part V 多元函数微分学
Part V 多元函数微分学 回到总目录 Part V 多元函数微分学 多元函数微分的极限定义 多元函数微分的连续性 多元函数微分的偏导数 z=f(x, y) 多元函数微分-链式求导规则 多元函数-高 ...
- [数学]高数部分-Part VI 重积分
Part VI 重积分 回到总目录 Part VI 重积分 二重积分的普通对称性 二重积分的轮换对称性(直角坐标系下) 二重积分直角坐标系下的积分方法 二重积分极坐标系下的积分方法 二重积分中值定理 ...
- [数学]高数部分-Part III 中值定理与一元微分学应用
Part III 中值定理与一元微分学应用 回到总目录 Part III 中值定理与一元微分学应用 1. 中值定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 柯西.拉格朗日.罗尔三者间的关系 ...
- [数学]高数部分-Part IV 一元函数积分学
Part IV 一元函数积分学 回到总目录 Part IV 一元函数积分学 不定积分定义 定积分定义 不定积分与定积分的几何意义 牛顿-莱布尼兹公式 / N-L 公式 基本积分公式 点火公式(华里士公 ...
- [数学]高数部分-Part I 极限与连续
Part I 极限与连续 回到总目录 Part I 极限与连续 一.极限 泰勒公式 基本微分公式 常用等价无穷小 函数极限定义 数列极限数列极限 极限的性质 极限的唯一性 极限的局部有限性 极限的局部 ...
- 期权定价公式:BS公式推导——从高数和概率论角度
嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.
- 高数解题神器:拍照上传就出答案,这个中国学霸做的AI厉害了 | Demo
一位叫Roger的中国学霸小哥的拍照做题程序mathAI一下子火了,这个AI,堪称数学解题神器. 输入一张包含手写数学题的图片,AI就能识别出输入的数学公式,然后给出计算结果. 不仅加减乘除基本运算, ...
- Contest 高数题 樹的點分治 樹形DP
高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...
- linux 服务器所支持的最大句柄数调高数倍(与服务器的内存数量相关)
https://github.com/alibaba/p3c/blob/master/阿里巴巴Java开发手册(详尽版).pdf 2. [推荐]调大服务器所支持的最大文件句柄数(File Descri ...
随机推荐
- Linux启动初始化配置文件
Linux启动初始化配置文件(1)/etc/profile 登录时,会执行. 全局(公有)配置,不管是哪个用户,登录时都会读取该文件. (2)/ect/bashrc Ubuntu没有此文件,与之对应的 ...
- c学习 - 算法
简介: 一个程序包括两方面内容:数据结构.算法 数据结构:对数据的描述,包括数据的类型和数据的组织形式 算法:对操作的描述,即操作步骤 (程序=算法+数据结构) 算法是灵魂,数据结构是加工对象,语言是 ...
- python中numpy库ndarray多维数组的的运算:np.abs(x)、np.sqrt(x)、np.modf(x)等
numpy库提供非常便捷的数组运算,方便数据的处理. 1.数组与标量之间可直接进行运算 In [45]: aOut[45]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ ...
- 莫烦python教程学习笔记——使用鸢尾花数据集
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 如何推翻JAVA的统治地位
"java越来越过份了."php狠狠的说,他转头看着C:"C哥,您可是前辈,java最近砸了我不少场子,你老再不出来管管,我怕他眼里就没有您了啊." C哥吸烟, ...
- 转:StoryBoard快速上手
由于最近才接触到IOS,苹果已经建议storyboard来搭建所有界面了,于是我也追随时尚,直接开始使用storyboard.(不料在涉及到页 面跳转的时候,遇到的问题是:点击后没有任何反应)众所周知 ...
- Three.js 实现3D全景侦探小游戏🕵️
背景 你是嘿嘿嘿侦探社实习侦探️,接到上级指派任务,到甄开心小镇调查市民甄不戳宝石失窃案,根据线人流浪汉老石提供的线索,小偷就躲在小镇,快把他找出来,帮甄不戳寻回失窃的宝石吧! 本文使用 Three ...
- 资源的批量删除与替换(Project)
<Project2016 企业项目管理实践>张会斌 董方好 编著 资源分配好以后,嗯,很满意! 可是!有人看了不满意,或者自己手贱分配错了,要改? 改就改呗,和分配有什么区别吗? 没有啊! ...
- Java 自定义注解在登录验证的应用
java注解 从 JDK 5开始,Java 增加了注解的新功能,注解其实是代码里面的特殊标记,这些标记可以在编译.类加载和运行时被读取,在不改变代码原有逻辑下,给源文件嵌入注解信息.再通过返回获取注解 ...
- CF1557B Moamen and k-subarrays 题解
Content 给定一个大小为 \(n\) 的数组.你可以将其分为 \(k\) 个子数组,并按照每个子数组的字典序重新排列这些子数组,再顺次拼接,得到一个新的数组.问是否存在一种划分子数组的方案,使得 ...