k邻*算法具体应用:2-2约会网站配对

  心得体会:

1.对所有特征值进行归一化处理:将特征值单位带来的距离影响消除,使所有特征同权重——然后对不同的特征进行加权
2.对于相互独立的特征,可以通过建立(特征值—类型 )图表进行计算,但是多个特征值是相互关联的则需要建立多维图表

#2-2约会网站配对

#将文本记录转换为NumPy
def file2matrix(filename):
love_dictionary = {'largeDoses':3, 'smallDoses':2, 'didntLike':1}
fr = open(filename) #打开文件
arrayOLines = fr.readlines() #行组成的数组
numberOfLines = len(arrayOLines) #返回数组元素个数
returnMat = zeros((numberOfLines, 3)) #生成numberOfLines*3的0数组
classLabelVector = [] #数组
index = 0
for line in arrayOLines:
line = line.strip() #除去头尾空格
listFromLine = line.split('\t') #按'\t'分割成数组
returnMat[index, :] = listFromLine[0:3] #从0开始截取3个
if(listFromLine[-1].isdigit()):
classLabelVector.append(int(listFromLine[-1])) #是数字就放数字,存入类型
else:
classLabelVector.append(love_dictionary.get(listFromLine[-1])) #是字符串就转成数字,存入类型
index += 1
return returnMat, classLabelVector import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure() #返回一个图像窗口
ax = fig.add_subplot(111) #在1行1列1号位画子图
datingDataMat,datingLabels=file2matrix("E:/Python/《机器学*实战》代码/Ch02/datingTestSet2.txt")
# print(datingLabels)
# ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
#scatter(x, y, 点的大小, 颜色,标记)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels),15.0*array(datingLabels),"*")
ax.axis([-2,25,-0.2,2.0]) #[x轴min,x轴max,y轴min,y轴max]
plt.xlabel('game')
plt.ylabel('ice')
# plt.show() # 归一化特征值
# newVal=(oldVal-minVal)/(maxVal-minVal)
def autoNorm(dataSet):
minVals=dataSet.min(0) #得到每一列的最小值(列1min,列2min,列3min)
maxVals=dataSet.max(0) #得到每一列的最大值
ranges=maxVals-minVals
normDataSet=zeros(shape(dataSet))# 建立一个和dataSet一样大小的0矩阵
m=dataSet.shape[0]
normDataSet=dataSet-tile(minVals,(m,1))# tile建立矩阵tile(重复的内容,(在高度上重复,在长度上重复))
normDataSet=normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals normMat,ranges,minVals=autoNorm(datingDataMat) #分类器
def datingClassTest():
hoRatio=0.10 #0.1的数据作为测试
datingDataMat,datingLabels=file2matrix("E:/Python/《机器学*实战》代码/Ch02/datingTestSet2.txt")
normMat,ranges,minVals=autoNorm(datingDataMat)#归一化的特征值,特征值原本范围,特征值最小值
m=normMat.shape[0]
numTestVecs=int(m*hoRatio)#测试数据的数量
errorCount=0.0
for i in range(numTestVecs):
classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print("the classifier came back with:%d,the real answer is :%d"%(classifierResult,datingLabels[i]))
if(classifierResult!=datingLabels[i]):
errorCount+=1.0
print("The total error rate is :%f"%(errorCount/float(numTestVecs))) #约会网站预测函数
def classifyPerson():
resultList=['not at all','in small doses','in large doses']
percentTats=float(input("游戏时间百分比"))
ffMiles=float(input("每年飞行常客里程数"))
iceCream=float(input("每年吃冰淇淋多少升"))
datingDataMat,datingLabels=file2matrix("E:/Python/《机器学*实战》代码/Ch02/datingTestSet2.txt")
normMat,ranges,minVals=autoNorm(datingDataMat)
inArr=array([ffMiles,percentTats,iceCream])
classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print(resultList[classifierResult-1]) # classifyPerson()
												

【机器学*】k*邻算法-02的更多相关文章

  1. 机器学*——K*邻算法(KNN)

    1 前言 Kjin邻法(k-nearest neighbors,KNN)是一种基本的机器学*方法,采用类似"物以类聚,人以群分"的思想.比如,判断一个人的人品,只需观察他来往最密切 ...

  2. 【机器学*】k-*邻算法(kNN) 学*笔记

    [机器学*]k-*邻算法(kNN) 学*笔记 标签(空格分隔): 机器学* kNN简介 kNN算法是做分类问题的.思想如下: KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数 ...

  3. 【机器学*】k*邻算法-03

    心得体会: 需要思考如何将现实对象转化为特征向量,设置特征向量时记住鸭子定律1 鸭子定律1 如果走路像鸭子.说话像鸭子.长得像鸭子.啄食也像鸭子,那它肯定就是一只鸭子 事物的外在特征就是事物本质的表现 ...

  4. 【机器学*】k*邻算法-01

    k临*算法(解决分类问题): 已知数据集,以及该数据对应类型 给出一个数据x,在已知数据集中选择最接*x的k条数据,根据这k条数据的类型判断x的类型 具体实现: from numpy import * ...

  5. 【机器学*与R语言】2-懒惰学*K*邻(kNN)

    目录 1.理解使用KNN进行分类 KNN特点 KNN步骤 1)计算距离 2)选择合适的K 3)数据准备 2.用KNN诊断乳腺癌 1)收集数据 2)探索和准备数据 3)训练模型 4)评估模型的性能 5) ...

  6. 02机器学习实战之K近邻算法

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...

  7. K近邻算法:机器学习萌新必学算法

    摘要:K近邻(k-NearestNeighbor,K-NN)算法是一个有监督的机器学习算法,也被称为K-NN算法,由Cover和Hart于1968年提出,可以用于解决分类问题和回归问题. 1. 为什么 ...

  8. [机器学习系列] k-近邻算法(K–nearest neighbors)

    C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...

  9. 一步步教你轻松学KNN模型算法

    一步步教你轻松学KNN模型算法( 白宁超 2018年7月24日08:52:16 ) 导读:机器学习算法中KNN属于比较简单的典型算法,既可以做聚类又可以做分类使用.本文通过一个模拟的实际案例进行讲解. ...

随机推荐

  1. keybd_event模拟键盘按键,mouse_event怎么用

    从 模仿UP主,用Python实现一个弹幕控制的直播间! - 蛮三刀酱 - 博客园 (cnblogs.com) 知道了 PyAutoGUI: * Moving the mouse and clicki ...

  2. Java偏向锁浅析

    偏向锁的定义 顾名思义,偏向锁会偏向第一个访问锁的线程. 如果在接下来的运行过程中,该锁没有被其他线程访问,这持有偏向锁的线程将永远不需要同步 如果在运行过程中,遇到了其他线程抢占锁,则持有偏向锁的线 ...

  3. Linux学习 - 脚本安装包

    脚本安装包不是独立的软件包类型,常见安装的是源码包

  4. Android 实现微信QQ分享以及第三方登录

    集成准备 在微信开放平台创建移动应用,输入应用的信息,包括移动应用名称,移动应用简介,移动应用图片信息,点击下一步,选择Android 应用,填写信息提交审核. 获取Appkey 集成[友盟+]SDK ...

  5. spring 事务处理中,同一个类中:A方法(无事务)调B方法(有事务),事务不生效问题

    public class MyEntry implements IBaseService{ public String A(String jsonStr) throws Exception{ User ...

  6. Spring AOP通过注解的方式设置切面和切入点

    切面相当于一个功能的某一个类,切入点是这个类的某部分和需要额外执行的其他代码块,这两者是多对多的关系,在代码块处指定执行的条件. Aspect1.java package com.yh.aop.sch ...

  7. ICCV2021 | 用于视觉跟踪的学习时空型transformer

    ​  前言  本文介绍了一个端到端的用于视觉跟踪的transformer模型,它能够捕获视频序列中空间和时间信息的全局特征依赖关系.在五个具有挑战性的短期和长期基准上实现了SOTA性能,具有实时性,比 ...

  8. Jenkins集成jira

    目录 一.Jenkins中Jira插件安装 二.Jenkins中Jira配置 一.Jenkins中Jira插件安装 点击 Manage Jenkins-->Manage Plugins--> ...

  9. Jenkins凭证管理

    目录 一.简介 二.管理凭证 三.常用凭证 保密文本 账号密码 保密文件 账号秘钥 四.优雅使用凭证 保密文本 账号密码 保密文件 五.凭证插件 集成HashiCorp Vault pipeline ...

  10. 攻击科普:DDos

    目录 一.DDoS 攻击究竟是什么? 二.DDoS 攻击多少G是什么意思? 二.DDoS攻击种类 ICMP Flood UDP Flood NTP Flood SYN Flood CC攻击 DNS Q ...