Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2974    Accepted Submission(s): 843

Problem Description
XXX is puzzled with the question below:

1, 2, 3, ..., n (1<=n<=400000) are placed in a line. There are m (1<=m<=1000) operations of two kinds.

Operation
1: among the x-th number to the y-th number (inclusive), get the sum of
the numbers which are co-prime with p( 1 <=p <= 400000).
Operation 2: change the x-th number to c( 1 <=c <= 400000).

For each operation, XXX will spend a lot of time to treat it. So he wants to ask you to help him.
 
Input
There are several test cases.
The first line in the input is an integer indicating the number of test cases.
For each case, the first line begins with two integers --- the above mentioned n and m.
Each the following m lines contains an operation.
Operation 1 is in this format: "1 x y p".
Operation 2 is in this format: "2 x c".
 
Output
For each operation 1, output a single integer in one line representing the result.
 
Sample Input
1
3 3
2 2 3
1 1 3 4
1 2 3 6
 
Sample Output
7
0
思路:容斥原理;
因为原数列是[1,n];所以数的和我们可以直接用求和公式;
然后m<1000;所以改变的最多不超过1000;我们用数组存改变,改变的位置会重复,这时后要覆盖,也就是数组中原先已有这个点,我们可以用map标记是否在数组中已有;
没有的话加入,有的话覆盖。
然后询问是[x,y]区间内与z互质的数的和,所以我们考虑分解z,那么素数打表。
然后容斥求在[x,y]与z互质数的和;然后再循环一遍改变,判断替换的数,和原来的数是否与z互质,原来的数互质的话减去原来的,改变的数互质的话,加上改变的数;
每个数的不同的质因数不超过9个;
复杂度(5120*m);
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<queue>
7 #include<map>
8 typedef long long LL;
9 using namespace std;
10 bool prime[400005];
11 int ans[400005];
12 queue<int>que;
13 int cm[400005];
14 int ma[400005];
15 int flag[2000];
16 int gcd(int n,int m);
17 map<int,int>my;
18 int main(void)
19 {
20 int i,j,k;
21 int p,q;
22 int n,m;
23 int x,y;
24 int t;
25 for(i=2; i<=2000; i++)
26 {
27 if(!prime[i])
28 {
29 for(j=i; i*j<=400000; j++)
30 {
31 prime[i*j]=true;
32 }
33 }
34 }
35 int cnt=0;
36 for(i=2; i<=400000; i++)
37 {
38 if(!prime[i])
39 {
40 ans[cnt++]=i;
41 }
42 }
43 scanf("%d",&k);
44 while(k--)
45 { my.clear();
46 scanf("%d %d",&p,&q);
47 int bt=1;
48 for(i=0; i<=p; i++)
49 ma[i]=i;
50 while(q--)
51 {
52 scanf("%d",&n);
53 if(n==1)
54 {
55 scanf("%d %d %d",&x,&y,&t);
56 int r=0;
57 int yy=0;
58 int xy=t;
59 if(x>y)swap(x,y);
60 while(t>1)
61 {
62 if(r==0&&t%ans[yy]==0)
63 {
64 r=1;
65 que.push(ans[yy]);
66 t/=ans[yy];
67 }
68 else if(r==1&&t%ans[yy]==0)
69 {
70 t/=ans[yy];
71 }
72 else
73 {
74 r=0;
75 yy++;
76 }
77 }
78 x-=1;
79 int ak=0;
80 while(!que.empty())
81 {
82 cm[ak++]=que.front();
83 que.pop();
84 }
85 LL sum1=0;
86 LL sum2=0;
87 for(i=1; i<=(1<<ak)-1; i++)
88 {
89 int nn=0;
90 LL dp=1;
91 for(j=0; j<ak; j++)
92 {
93 if(i&(1<<j))
94 {
95 nn++;
96 dp*=(LL)cm[j];
97 }
98 }
99 if(nn%2)
100 {
101 LL ct=y/dp;
102 LL qt=x/dp;
103 LL ct1=ct+1;
104 LL qt1=qt+1;
105 sum1+=dp*ct1*ct/2;
106 sum2+=dp*qt1*qt/2;
107 }
108 else
109 {
110 LL ct=y/dp;
111 LL qt=x/dp;
112 LL ct1=ct+1;
113 LL qt1=qt+1;
114 sum1-=dp*ct1*ct/2;
115 sum2-=dp*qt1*qt/2;
116 }
117 } LL xc=1+x;LL yc=1+y;
118 LL ap1=(long long )(xc)*(long long)x/2;
119 LL ap2=(long long)(yc)*(long long)y/2;
120 ap2-=sum1;
121 ap1-=sum2;
122 ap2-=ap1;
123 for(j=1; j<bt; j++)
124 {
125 if(flag[j]>=x+1&&flag[j]<=y)
126 {
127 int cp=gcd(xy,ma[flag[j]]);
128 int cq=gcd(xy,flag[j]);
129 if(cq==1)
130 ap2-=flag[j];
131 if(cp==1)
132 ap2+=ma[flag[j]];
133 }
134 }
135 printf("%lld\n",ap2);
136 }
137 else
138 {
139 scanf("%d %d",&x,&t);
140 if(my[x]==0)
141 {my[x]=1;flag[bt]=x;bt++;}
142 ma[x]=t;
143 }
144 }
145 }
146 return 0;
147 }
148 int gcd(int n,int m)
149 {
150 if(m==0)
151 return n;
152 else if(n%m==0)
153 return m;
154 else return gcd(m,n%m);
155 }
 

Sum(hdu4407)的更多相关文章

  1. hdu4407 Sum 容斥原理

    XXX is puzzled with the question below: 1, 2, 3, ..., n (1<=n<=400000) are placed in a line. T ...

  2. LeetCode - Two Sum

    Two Sum 題目連結 官網題目說明: 解法: 從給定的一組值內找出第一組兩數相加剛好等於給定的目標值,暴力解很簡單(只會這樣= =),兩個迴圈,只要找到相加的值就跳出. /// <summa ...

  3. Leetcode 笔记 113 - Path Sum II

    题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...

  4. Leetcode 笔记 112 - Path Sum

    题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...

  5. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  6. BZOJ 3944 Sum

    题目链接:Sum 嗯--不要在意--我发这篇博客只是为了保存一下杜教筛的板子的-- 你说你不会杜教筛?有一篇博客写的很好,看完应该就会了-- 这道题就是杜教筛板子题,也没什么好讲的-- 下面贴代码(不 ...

  7. [LeetCode] Path Sum III 二叉树的路径和之三

    You are given a binary tree in which each node contains an integer value. Find the number of paths t ...

  8. [LeetCode] Partition Equal Subset Sum 相同子集和分割

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  9. [LeetCode] Split Array Largest Sum 分割数组的最大值

    Given an array which consists of non-negative integers and an integer m, you can split the array int ...

随机推荐

  1. javaSE高级篇2 — 流技术 — 更新完毕

    1.先认识一个类----File类 前言:IO相关的一些常识 I / O----输入输出 I     输入     input 0    输出     output I / o 按数据的流动方向来分- ...

  2. 15. Linux提取RPM包文件(cpio命令)详解

    在讲解如何从 RPM 包中提取文件之前,先来系统学习一下 cpio 命令.cpio 命令用于从归档包中存入和读取文件,换句话说,cpio 命令可以从归档包中提取文件(或目录),也可以将文件(或目录)复 ...

  3. 零基础学习java------38---------spring中关于通知类型的补充,springmvc,springmvc入门程序,访问保护资源,参数的绑定(简单数据类型,POJO,包装类),返回数据类型,三大组件,注解

    一. 通知类型 spring aop通知(advice)分成五类: (1)前置通知[Before advice]:在连接点前面执行,前置通知不会影响连接点的执行,除非此处抛出异常. (2)正常返回通知 ...

  4. 容器之分类与各种测试(三)——list部分用法

    list是一个双向链表 例程 #include<stdexcept> #include<memory.h> #include<string> #include< ...

  5. 机器学习常用python包

    (py37) ai@ai:~$ pip freeze |grep -v '@' astor==0.8.1 certifi==2021.5.30 chardet==4.0.0 cycler==0.10. ...

  6. Android 极光推送集成

    集成Jpush 1.用Android Studio创建一个Demo 2.创建激光推送开发者账号,要创建极光推送开发者帐号,请访问极光推送官方网站https://www.jiguang.cn/push ...

  7. 如果你不想让pthread_join阻塞你的进程,那么请调用pthread_detach

    如果你不想让pthread_join阻塞你的进程,那么请调用pthread_detach 2016年01月13日 16:04:20 炸鸡叔 阅读数:7277   转发自:http://baike.ba ...

  8. oracle体系结构(图)

  9. OceanBase 2.x体验:推荐用DBeaver工具连接数据库

    Original MQ4096 [OceanBase技术闲谈](javascript:void(0) 2020-01-15 OceanBase 2.x体验:推荐用DBeaver工具连接数据库 Ocea ...

  10. Java8 函数式接口 @FunctionalInterface以及常用Consumer<T>、Supplier<T>、Function<T, R>、Predicate<T>总结

    首先看看什么是Lambda 表达式 Lambda是一个匿名函数,我们可以把Lambda表达式理解为一段可以传递的代码(将代码像数据一样传递):最简单的Lambda表达式可由逗号分隔的参数列表.-> ...