正题

题目链接:https://www.luogu.com.cn/problem/P3175


题目大意

开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s\)或上这个数字\(i\),求期望多少次能够让\(s\)的\(n\)个位都变为\(1\)。


解题思路

因为是或所以我们只关心最后一个选中的数,设第\(i\)位选中的期望次数为\(E(i)\)的话答案就是\(max\{E(i)\}\)。

又是期望又是\(max\)所以可以直接上\(\text{min-max}\)容斥,答案就是

\[\sum_{T\in S}min\{E(i)\}(i\in T)*(-1)^{|T|+1}
\]

算这个东西的话也就是如果我们选中一个与\(T\)有交集的数就可以退出了。期望次数=1/期望概率。所以我们直接算期望概率

也就是我们要算所有\(\sum_{G\cap T\neq \varnothing}p_{G}\)。\(G\)和\(T\)的交集非空就去掉所有交集为空的,交集为空的就是\(T\)的补集的子集和。

子集和的话就是直接拿\(p\)出来跑一次\(or\)的\(\text{FWT}\)的结果就是子集和了。

时间复杂度\(O(n2^n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1<<21;
const double eps=1e-8;
int n;double cnt[N],p[N],ans;
void FWT_or(double *f,int op){
for(int p=2;p<=n;p<<=1)
for(int k=0,len=p>>1;k<n;k+=p)
for(int i=k;i<k+len;i++)
f[i+len]+=f[i]*op;
return;
}
int main()
{
scanf("%d",&n);
cnt[0]=-1;n=1<<n;
for(int i=0;i<n;i++)
scanf("%lf",&p[i]);
FWT_or(p,1);
for(int i=0;i<n;i++){
if(i)cnt[i]=-cnt[i-(i&-i)];
double e=1-p[(n-1)^i];
if(fabs(e)<eps)continue;
ans+=cnt[i]*(1.0/e);
}
if(ans<eps)printf("INF");
else printf("%.10lf",ans);
}

P3175-[HAOI2015]按位或【min-max容斥,FWT】的更多相关文章

  1. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  2. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  3. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  4. bzoj4036 / P3175 [HAOI2015]按位或

    bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...

  5. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  6. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  7. luogu P3175 [HAOI2015]按位或

    传送门 如果每个位置上的数字的意义是这个位置被加进集合的最早时间,那么我们要求的就是集合中最大数的期望,使用Min-Max容斥,\(E(max(S))=\sum_{T\subset S}(-1)^{| ...

  8. [洛谷P3175][HAOI2015]按位或

    题目大意:刚开始有一个数$x=0$,每秒钟有一个数$y\in[0,2^n)(n\leqslant20)$按一定概率随机出现,数$i$的概率为$p_i$,保证$\sum\limits_{i=0}^{2^ ...

  9. 洛谷 P3175 [HAOI2015]按位或

    题目分析 与hdu4336 Card Collector相似,使用min-max容斥. 设\(\max(S)\)表示集合\(S\)中最后一位出现的期望时间. 设\(\min(S)\)表示集合\(S\) ...

随机推荐

  1. map中使用箭头函数遇到的坑

    箭头函数提供了更简洁和更短的语法,其中一个可用功能是可以将函数编写为具有隐式返回值的lambda表达式.这对于功能样式代码很方便,比如使用函数映射数组: const numbers = [1,2,3, ...

  2. echatrts 各参数快速了解(+实例)

    实例:https://www.jianshu.com/p/8cac22daca98 参数详解:https://echarts.baidu.com/option.html#title.textStyle ...

  3. C# Fakes

    我们为了测试程序的运行逻辑,需要写单元测试来验证程序的逻辑.有的时候我们的逻辑需要依赖于外界的事物(需要一个文件,eg:数据库),我们不可能在运行单元测试的计算机都创建一个数据库,所以这个时候我们就需 ...

  4. ☕【Java技术指南】「难点-核心-遗漏」Java线程状态流转及生命周期的技术指南(知识点串烧)!

    前提介绍 本章主要介绍相关线程声明周期的转换机制以及声明周期的流转关系以及相关AQS的实现和相关的基本原理,配合这相关官方文档的中英文互译的介绍. 线程状态流转及生命周期 当线程被创建并启动以后,它既 ...

  5. 使用Keepalived实现Nginx的自动重启及双主热备高可用

    1.概述 之前我们使用Keepalived实现了Nginx服务的双机主备高可用,但是有几个问题没有解决,今天一起探讨一下. 1)在双机主备机制中,Keepalived服务如果宕了,会自动启用备机进行服 ...

  6. 关闭Redis服务

    方式1: 方式2:

  7. Dockerfile 自动制作 Docker 镜像(三)—— 镜像的分层与 Dockerfile 的优化

    Dockerfile 自动制作 Docker 镜像(三)-- 镜像的分层与 Dockerfile 的优化 前言 a. 本文主要为 Docker的视频教程 笔记. b. 环境为 CentOS 7.0 云 ...

  8. PyTorch学习笔记6--案例2:PyTorch神经网络(MNIST CNN)

    上一节中,我们使用autograd的包来定义模型并求导.本节中,我们将使用torch.nn包来构建神经网络. 一个nn.Module包含各个层和一个forward(input)方法,该方法返回outp ...

  9. Vue3的新特性及相关的Composition API使用

    首先 创建项目 Vue3 Vue3 相较于Vue2 的6大亮点: 1 性能快. 2 按需编译 体积更小 3 提供了组合API 类似于react 的React Hooks 4 更好的Ts支持 5 暴露了 ...

  10. 有个计算机专业的学妹问我:我这个zip文件密码破解运行起来为什么内存爆了?

    1.这篇博文的由来 2.跑下错误代码,找病根 先把学妹发给我的错误代码放上,能发现他为了提高速度加了多线程的代码,很聪明哦: import zipfile import itertools from ...