ALDS1_5_B-MergeSort.

Description:

Write a program of a Merge Sort algorithm implemented by the following pseudocode. You should also report the number of comparisons in the Merge function.

Merge(A, left, mid, right)

n1 = mid - left;

n2 = right - mid;

create array L[0...n1], R[0...n2]

for i = 0 to n1-1

do L[i] = A[left + i]

for i = 0 to n2-1

do R[i] = A[mid + i]

L[n1] = SENTINEL

R[n2] = SENTINEL

i = 0;

j = 0;

for k = left to right-1

if L[i] <= R[j]

then A[k] = L[i]

i = i + 1

else A[k] = R[j]

j = j + 1

Merge-Sort(A, left, right){

if left+1 < right

then mid = (left + right)/2;

call Merge-Sort(A, left, mid)

call Merge-Sort(A, mid, right)

call Merge(A, left, mid, right)

Input:

In the first line n is given. In the second line, n integers are given.

Output:

In the first line, print the sequence S. Two consequtive elements should be separated by a space character.

In the second line, print the number of comparisons.

Constraints:

n ≤ 500000

0 ≤ an element in S ≤ 109

SampleInput:

10

8 5 9 2 6 3 7 1 10 4

SampleOutput:

1 2 3 4 5 6 7 8 9 10

34

Codes:
//#define LOCAL

#include <cstdio>

#define M 500010
#define SENTINEL 2000000000
int s = 0, A[M], L[M], R[M]; void merge(int l, int m, int r) {
int i, j, k, n1 = m-l, n2 = r-m;
L[n1] = R[n2] = SENTINEL;
for(i=0; i<n1; ++i) L[i] = A[l+i];
for(i=0; i<n2; ++i) R[i] = A[m+i];
i = j = 0;
for(k=l; k<r; ++k) {
if(L[i] <= R[j]) A[k] = L[i++];
else A[k] = R[j++]; ++s;
}
} void mergeSort(int l, int r) {
if(l+1 < r) {
int m = (l+r)/2;
mergeSort(l, m);
mergeSort(m, r);
merge(l, m, r);
}
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, n;
scanf("%d", &n);
for(i=0; i<n; ++i) scanf("%d", &A[i]); mergeSort(0, n);
for(i=0; i<n; ++i) {
if(i) printf(" ");
printf("%d", A[i]);
}
printf("\n%d\n", s); return 0;
}

ALDS1_6_B-Partition.

Description:

Quick sort is based on the Divide-and-conquer approach. In QuickSort(A, p, r), first, a procedure Partition(A, p, r) divides an array A[p..r] into two subarrays A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] is less than or equal to A[q], which is, inturn, less than or equal to each element of A[q+1..r]. It also computes the index q.

In the conquer processes, the two subarrays A[p..q-1] and A[q+1..r] are sorted by recursive calls of QuickSort(A, p, q-1) and QuickSort(A, q+1, r).

Your task is to read a sequence A and perform the Partition based on the following pseudocode:

Partition(A, p, r)

1 x = A[r]

2 i = p-1

3 for j = p to r-1

4 do if A[j] <= x

5 then i = i+1

6 exchange A[i] and A[j]

7 exchange A[i+1] and A[r]

8 return i+1

Input:

The first line of the input includes an integer n, the number of elements in the sequence A.

In the second line, n elements of the sequence are given separated by space characters.

Output:

Print the sorted sequence. Two contiguous elements of the sequence should be separated by a space character. The element which is selected as the pivot of the partition should be indicated by [ ].

Constraints:

1 ≤ n ≤ 100,000

SampleInput:

12

13 19 9 5 12 8 7 4 21 2 6 11

SampleOutput:

9 5 8 7 4 2 6 [11] 21 13 19 12

Codes:
//#define LOCAL

#include <cstdio>

#define M 100010
int A[M]; int partition(int p, int r) {
int i = p-1, a = A[r], j, t;
for(j=p; j<r; ++j) {
if(A[j] <= a) {
++i;
t = A[i]; A[i] = A[j]; A[j] = t;
}
}
A[r] = A[i+1]; A[i+1] = a;
return i+1;
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, n, q;
scanf("%d", &n);
for(i=0; i<n; ++i) scanf("%d", &A[i]); q = partition(0, n-1);
for(i=0; i<n; ++i) {
if(i) printf(" ");
if(i == q) printf("[%d]", A[i]);
else printf("%d", A[i]);
}
printf("\n"); return 0;
}

ALDS1_6_C-QuickSort.

Description:

Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode:

Partition(A, p, r)

1 x = A[r]

2 i = p-1

3 for j = p to r-1

4 do if A[j] <= x

5 then i = i+1

6 exchange A[i] and A[j]

7 exchange A[i+1] and A[r]

8 return i+1

Quicksort(A, p, r)

1 if p < r

2 then q = Partition(A, p, r)

3 run Quicksort(A, p, q-1)

4 run Quicksort(A, q+1, r)

Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers.

Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance).

Input:

The first line contains an integer n, the number of cards.

n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space.

Output:

In the first line, print the stability ("Stable" or "Not stable") of this output.

In the following lines, print the arranged cards in the same manner of that of the input.

Constraints:

1 ≤ n ≤ 100,000

1 ≤ the number of a card ≤ 109

There are no identical card in the input

SampleInput1:

6

D 3

H 2

D 1

S 3

D 2

C 1

SampleOutput1:

Not stable

D 1

C 1

D 2

H 2

D 3

S 3

SampleInput2:

2

S 1

H 1

SampleOutput2:

Stable

S 1

H 1

Codes:
//#define LOCAL

#include <cstdio>

#define M 100010
#define S 2000000000
struct Card {
char p;
int q;
};
Card A[M], B[M], L[M], R[M]; void merge(int l, int m, int r) {
int i, j, k, n1 = m-l, n2 = r-m;
for(i=0; i<n1; ++i) L[i] = A[l+i];
for(i=0; i<n2; ++i) R[i] = A[m+i];
i = j = 0, L[n1].q = R[n2].q = S;
for(k=l; k<r; ++k) {
if(L[i].q <= R[j].q) A[k] = L[i++];
else A[k] = R[j++];
}
} void mergeSort(int l, int r) {
if(l+1 < r) {
int m = (l+r)/2;
mergeSort(l, m);
mergeSort(m, r);
merge(l, m, r);
}
} int partition(int l, int r) {
int i = l-1, j, x = B[r].q;
for(j=l; j<r; ++j) {
if(B[j].q <= x) {
++i;
Card t = B[j]; B[j] = B[i]; B[i] = t;
}
}
Card t = B[r]; B[r] = B[i+1]; B[i+1] = t;
return i+1;
} void quickSort(int l, int r) {
int m;
if(l < r) {
m = partition(l, r);
quickSort(l, m-1);
quickSort(m+1, r);
}
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, m, n;
char t[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s%d", t, &m);
A[i].p = B[i].p = t[0];
A[i].q = B[i].q = m;
} mergeSort(0, n);
quickSort(0, n-1);
for(i=0; i<n; ++i) {
if(A[i].p != B[i].p) {
printf("Not stable\n");
break;
}
}
if(i == n) printf("Stable\n");
for(i=0; i<n; ++i) {
printf("%c %d\n", B[i].p, B[i].q);
} return 0;
}

ALDS1_6_A-CountingSort.

Description:

Counting sort can be used for sorting elements in an array which each of the n input elements is an integer in the range 0 to k. The idea of counting sort is to determine, for each input element x, the number of elements less than x as C[x]. This information can be used to place element x directly into its position in the output array B. This scheme must be modified to handle the situation in which several elements have the same value. Please see the following pseudocode for the detail:

Counting-Sort(A, B, k)

1 for i = 0 to k

2 do C[i] = 0

3 for j = 1 to length[A]

4 do C[A[j]] = C[A[j]]+1

5 /* C[i] now contains the number of elements equal to i /

6 for i = 1 to k

7 do C[i] = C[i] + C[i-1]

8 /
C[i] now contains the number of elements less than or equal to i */

9 for j = length[A] downto 1

10 do B[C[A[j]]] = A[j]

11 C[A[j]] = C[A[j]]-1

Write a program which sorts elements of given array ascending order based on the counting sort.

Input:

The first line of the input includes an integer n, the number of elements in the sequence.

In the second line, n elements of the sequence are given separated by spaces characters.

Output:

Print the sorted sequence. Two contiguous elements of the sequence should be separated by a space character.

Constraints:

1 ≤ n ≤ 2,000,000

0 ≤ A[i] ≤ 10,000

SampleInput:

7

2 5 1 3 2 3 0

SampleOutput:

0 1 2 2 3 3 5

Codes:
//#define LOCAL

#include <cstdio>

#define M 10010
#define VM 2000010
int A[VM], B[M], C[VM]; int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, n;
scanf("%d", &n);
for(i=1; i<=n; ++i) {
scanf("%d", &A[i]);
++B[A[i]];
} for(i=1; i<M; ++i) B[i] += B[i-1];
for(i=n; i>=1; --i) C[B[A[i]]--] = A[i];
for(i=1; i<=n; ++i) {
if(i > 1) printf(" ");
printf("%d", C[i]);
}
printf("\n"); return 0;
}

ALDS1_5_D-TheNumberOfInversions.

Codes:
#include <iostream>
using namespace std; #define MAX 200000
#define SENTINEL 2000000000
typedef long long llong;
int L[MAX/2+2], R[MAX/2+2]; llong merge(int A[], int n, int left, int mid, int right) {
llong cnt = 0;
int i, j, k, n1 = mid-left, n2 = right-mid;
for(i=0; i<n1; ++i) L[i] = A[left+i];
for(i=0; i<n2; ++i) R[i] = A[mid+i];
i = j = 0, L[n1] = R[n2] = SENTINEL;
for(k=left; k<right; ++k) {
if(L[i] <= R[j]) A[k] = L[i++];
else A[k] = R[j++];
cnt += n1-i;
}
return cnt;
} llong mergeSort(int A[], int n, int left, int right) {
int mid;
llong v1, v2, v3;
if(left+1 < right) {
mid = (left+right)/2;
v1 = mergeSort(A, n, left, mid);
v2 = mergeSort(A, n, mid, right);
v3 = merge(A, n, left, mid, right);
return v1+v2+v3;
} else return 0;
} int main()
{
int n, i, A[MAX];
cin >> n;
for(i=0; i<n; ++i) cin >> A[i]; int ans = mergeSort(A, n, 0, n);
cout << ans << endl; return 0;
}

ALDS1_6_D-MinimumCostSort.

Codes:
#include <iostream>
#include <algorithm>
using namespace std; static const int MAX = 1000;
static const int VMAX = 10000;
int n, s, A[MAX], B[MAX], T[VMAX+1]; int solve() {
int i, ans = 0;
bool V[MAX];
for(i=0; i<n; ++i) {B[i] = A[i]; V[i] = false;}
sort(B, B+n);
for(i=0; i<n; ++i) T[B[i]] = i;
for(i=0; i<n; ++i) {
if(V[i]) continue;
int S = 0, an = 0, cur = i, m = VMAX;
while(1) {
V[cur] = true; ++an;
int v = A[cur]; m = min(m, v);
S += v; cur = T[v];
if(V[cur]) break;
}
ans += min(S+(an-2)*m, m+S+(an+1)*s);
}
return ans;
} int main()
{
cin >> n;
s = VMAX;
for(int i=0; i<n; ++i) {
cin >> A[i];
s = min(s, A[i]);
}
int ans = solve();
cout << ans << endl; return 0;
}

AOJ/高等排序习题集的更多相关文章

  1. AOJ/初等排序习题集

    ALDS1_1_D-MaximumProfit. Codes: //#define LOCAL #include <cstdio> #include <algorithm> u ...

  2. 贪心+拓扑排序 AOJ 2456 Usoperanto

    题目传送门 题意:给出一条链,比如x连到y,x一定要在y的左边,且代价是这条链经过的点的权值和,问如何排序使得代价最小 分析:类似拓扑排序,先把入度为0的点入队,把指向该点的所有点按照权值排序,保证这 ...

  3. AOJ/数据结构习题集

    ALDS1_3_A-Stack. Description: Write a program which reads an expression in the Reverse Polish notati ...

  4. AOJ/搜索递归分治法习题集

    ALDS1_4_A-LinearSearch. Description: You are given a sequence of n integers S and a sequence of diff ...

  5. AOJ/树二叉搜索树习题集

    ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...

  6. AOJ/堆与动态规划习题集

    ALDS1_9_A-CompleteBinaryTree. Codes: //#define LOCAL #include <cstdio> int parent(int i) { ret ...

  7. AOJ/树与二叉搜索树习题集

    ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...

  8. AOJ/搜索与递归及分治法习题集

    ALDS1_4_A-LinearSearch. Description: You are given a sequence of n integers S and a sequence of diff ...

  9. 数据结构与算法之PHP排序算法(归并排序)

    一.基本思想 归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,使每个子序列有序,再将已有序的子序列合并,得到完全有序的序列.该算法是采用分治法(Divid ...

随机推荐

  1. WPF---数据绑定之ItemsControl(三)

    一.Combox绑定 场景:定义多个Person,Person有Name和Age属性,将多个Person与Combox进行绑定,Combox中只显示Name信息,点击任意一个item,在左侧显示该条目 ...

  2. 高德地图——公交路线规划(关键字&坐标)

    &plugin=AMap.Transfer 1.关键词方式---不支持途径(仅支持2个数据) <!DOCTYPE html> <html> <head> & ...

  3. C# - 习题07_计算1分2分5分硬币各有多少枚

    时间:2017-09-08 整理:byzqy 题目:现在有1分.2分.5分硬币共100个,总金额为2.46元,请用程序计算出1分.2分.5分各有多少枚,有多少种算法? 这是最近面试遇到的一个题目,刚开 ...

  4. MySQL——字符串类型——char(n) 和 varchar(n)

    MySQL 的 char(n) 和 varchar(n) 括号中 n 代表字符的个数,而非字节个数,这里说的字符不论文字种类,假设一个字段的数据类型被规定为 char(2),则可以在这个字段上插入 ' ...

  5. Session原理、生命周期及购物车功能的实现

    在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据(保存该浏览器(会话)的相关信息)时 ...

  6. MySQL存储结构及SQL分类

    MySQL目录结构 bin -- mysql执行程序 docs -- 文档 share - 各国编码信息 data -- 存放mysql 数据文件 * 每个数据库 创建一个同名文件夹,.frm 存放t ...

  7. JavaScript之创建对象的模式

    使用Object的构造函数可以创建对象或者使用对象字面量来创建单个对象,但是这些方法有一个明显的缺点:使用相同的一个接口创建很多对象,会产生大量的重复代码. (一)工厂模式 这种模式抽象了创建具体对象 ...

  8. QT学习日记篇-03-仿写一个智能家居界面

    课程大纲: <1>让界面漂亮起来,仿写一个智能家居界面 ->第一:给QT工程添加图片 进入下一步: <注意路径和名称一定不能有中文>                   ...

  9. 剑指offer(一)——二维数组中的查找

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  10. shell运算方式

    1.(())--整数运算 [root@m01 /server/scripts]# a=1 [root@m01 /server/scripts]# b=2 [root@m01 /server/scrip ...