转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

题目:给出n个数,选出三个数,按下标顺序形成等差数列

http://www.codechef.com/problems/COUNTARI

如果只是形成 等差数列并不难,大概就是先求一次卷积,然后再O(n)枚举,判断2 * a[i]的种数,不过按照下标就不会了。

有种很矬的,大概就是O(n)枚举中间的数,然后 对两边分别卷积,O(n * n * lgn)。

如果能想到枚举中间的数的话,应该可以进一步想到分块处理。

如果分为K块

那么分为几种情况 :

三个数都是在当前块中,那么可以枚举后两个数,查找第一个数,复杂度O(N/K * N/K)

两个数在当前块中,那么另外一个数可能在前面,也可能在后面,同理还是枚举两个数,查找,复杂度
O(N/K * N/K)

如果只有一个数在当前块中,那么就要对两边的数进行卷积,然后枚举当前块中的数,查询2 × a[i]。复杂度O(N * lg N)

那么总体就是O(k * (N/K * N/K + N * lg N))。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
//FFT copy from kuangbin
const double pi = acos (-1.0);
// Complex z = a + b * i
struct Complex {
double a, b;
Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){}
Complex operator + (const Complex &c) const {
return Complex(a + c.a , b + c.b);
}
Complex operator - (const Complex &c) const {
return Complex(a - c.a , b - c.b);
}
Complex operator * (const Complex &c) const {
return Complex(a * c.a - b * c.b , a * c.b + b * c.a);
}
};
//len = 2 ^ k
void change (Complex y[] , int len) {
for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) {
if (i < j) swap(y[i] , y[j]);
int k = len / 2;
while (j >= k) {
j -= k;
k /= 2;
}
if(j < k) j += k;
}
}
// FFT
// len = 2 ^ k
// on = 1 DFT on = -1 IDFT
void FFT (Complex y[], int len , int on) {
change (y , len);
for (int h = 2 ; h <= len ; h <<= 1) {
Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h));
for (int j = 0 ; j < len ; j += h) {
Complex w(1 , 0);
for (int k = j ; k < j + h / 2 ; k ++) {
Complex u = y[k];
Complex t = w * y [k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0 ; i < len ; i ++) {
y[i].a /= len;
}
}
}
const int N = 100005;
typedef long long LL;
int n , a[N];
int block , size;
LL num[N << 2];
int min_num = 30000 , max_num = 1;
int before[N] = {0}, behind[N] = {0} , in[N] = {0};
Complex x1[N << 2] ,x2[N << 2];
int main () {
#ifndef ONLINE_JUDGE
freopen("input.txt" , "r" , stdin);
#endif
scanf ("%d", &n);
for (int i = 0 ; i < n ; ++ i) {
scanf ("%d", &a[i]);
behind[a[i]] ++;
min_num = min (min_num , a[i]);
max_num = max (max_num , a[i]);
}
LL ret = 0;
block = min(n , 35);
size = (n + block - 1) / block;
for (int t = 0 ; t < block ; t ++) {
int s = t * size , e = (t + 1) * size;
if (e > n) e = n;
for (int i = s ; i < e ; i ++) {
behind[a[i]] --;
}
for (int i = s ; i < e ; i ++) {
for (int j = i + 1 ; j < e ; j ++) {
int m = 2 * a[i] - a[j];
if(m >= 1 && m <= 30000) {
// both of three in the block
ret += in[m];
// one of the number in the pre block
ret += before[m];
}
m = 2 * a[j] - a[i];
if (m >= 1 && m <= 30000) {
// one of the number in the next block
ret += behind[m];
}
}
in[a[i]] ++;
}
// pre block , current block , next block
if (t > 0 && t < block - 1) {
int l = 1;
int len = max_num + 1;
while (l < len * 2) l <<= 1;
for (int i = 0 ; i < len ; i ++) {
x1[i] = Complex (before[i] , 0);
}
for (int i = len ; i < l ; i ++) {
x1[i] = Complex (0 , 0);
}
for (int i = 0 ; i < len ; i ++) {
x2[i] = Complex (behind[i] , 0);
}
for (int i = len ; i < l ; i ++) {
x2[i] = Complex (0 , 0);
}
FFT (x1 , l , 1);
FFT (x2 , l , 1);
for (int i = 0 ; i < l ; i ++) {
x1[i] = x1[i] * x2[i];
}
FFT (x1 , l , -1);
for (int i = 0 ; i < l ; i ++) {
num[i] = (LL)(x1[i].a + 0.5);
}
for (int i = s ; i < e ; i ++) {
ret += num[a[i] << 1];
}
}
for (int i = s ; i < e ; i ++) {
in[a[i]] --;
before[a[i]] ++;
}
}
printf("%lld\n", ret);
return 0;
}

CC Arithmetic Progressions (FFT + 分块处理)的更多相关文章

  1. CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)

    题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...

  2. CodeChef - COUNTARI Arithmetic Progressions (FFT)

    题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列. https://www.cnblogs.com/xiuwen ...

  3. CodeChef Arithmetic Progressions

    https://www.codechef.com/status/COUNTARI 题意: 给出n个数,求满足i<j<k且a[j]-a[i]==a[j]-a[k] 的三元组(i,j,k)的个 ...

  4. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

  5. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  6. 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions

    P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...

  7. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  8. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  9. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

随机推荐

  1. 【Maven实战】Maven开发环境的搭建和案例展示

    1.首先到www.apache.org中下载maven,得到一个apache-maven-3.1.0-bin.zip的压缩包. 2.将此压缩包解压,这里解压到D:\docs中,然后找到maven的bi ...

  2. ubuntu下QT输出程序控制台界面难看的解决方法

    这几天在ubuntu下装了QT5,但输出程序界面后,简直无法入目 于是,随便乱找后,终于找到解决方法 打开选项 在终端那行改下就行

  3. CSAPP:cachelab(1)

    本项目大体上就是要求用C\C++来模拟cpu对cache的访问,然后统计hits.misses和eviction的次数.其实并没有想象中的那么难,感觉完全可以当成一道acm里面的大模拟题..下面就对这 ...

  4. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  5. 【.NET跨平台】mac上安装VS for mac步骤详解

    安装过程中提示以下内容 提示原文如下 It was not possible to complete an automatic installation. This might be due to a ...

  6. IE的CSS相关的BUG(整理一)

    本来不想弄这个ie的bug的,真的很想让它快点死掉,可是事与愿违啊,没办法,还是贴出来,以备自用. 这个网页(http://haslayout.net/css/index)上例举了所有的IE和CSS相 ...

  7. [AngularJS] Services, Factories, and Providers -- value & Providers

    Creating a Value Object Sometimes you have javascript object defined: //value object var droidValue ...

  8. linux中切换用户方式su和su -的区别

    Using su The  su  command allows users to open a terminal window, and from that terminal start a sub ...

  9. 使用HighCharts实现实时数据展示

    在众多的工业控制系统领域常常会实时采集现场的温度.压力.扭矩等数据,这些数据对于监控人员进行现场态势感知.进行未来趋势预测具有重大指导价值.工程控制人员如果只是阅读海量的数据报表,对于现场整个态势的掌 ...

  10. 阿里巴巴iconfont使用方式

    IconFont的作用就是用字体的格式来取代图片.特殊字体的展示,用得比较多的就是一些纯色的图标,具体主要由当前css3属性里的自定义字体(@font-face)来实现. 1.首先在Iconfont- ...