所谓概率dp,用动态规划的思想找到一个事件中可能发生的所有情况,然后找到符合要求的那些情况数,除以总数便可以得到符合要求的事件发生的概率。其核心思想还是通过dp来得到事件发生的所有情况,很类似在背包专题中我们提及的组合记数问题。

我们通过具体的实例来体会概率dp这类问题。(Problem source : Light OJ 1064)

Description

n common cubic dice are thrown. What is the probability that the sum of all thrown dice is at least x?

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n < 25) and x (0 ≤ x < 150). The meanings of n and x are given in the problem statement.

Output

For each case, output the case number and the probability in 'p/q' form where p and q are relatively prime. If q equals 1 then print p only.

题目大意:给出整数n、x,同时抛掷n个筛子,求解点数和大于x情况出现的概率。

数理分析:我们更加细化的模拟这个抛掷筛子的过程,从第一个开始抛掷,不难发现有6种情况,然后抛掷第二个筛子,基于第一个筛子的6种情况,我们可以得到抛完第二个筛子后所有的情况,然后抛掷第三个筛子……

我们设置二维数组dp[i][j]表示抛掷i个筛子后,点数为j的情况数,我们容易得到如下的状态转移方程:

dp[i][j] = dp[i-1][j-k]  (k∈[1,6])

基于这个状态转移方程,我们不难得到第n个筛子抛掷后所有可能的情况的总数和符合要求的总数,这里根据题目的输出要求,需要是分数的最简形式,我们只需调用欧几里得算法求出最大公约数然后化简即可,而对于概率为0和1的特殊情况,设置条件进行判断即可。

参考代码如下。

#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; long long n , m , dp[][]; long long gcd(long long a , long long b)
{
return b == ? a:gcd(b,a%b);
} int main()
{
int i , j , k , cas , T;
scanf("%d",&T);
for(cas = ;cas <= T;cas++)
{
scanf("%lld%lld",&n,&m);
memset(dp , , sizeof(dp));
dp[][] = ;
for(i = ;i <= n;i++)
{
for(j = ;j < ;j++)
{
for(k = ;k <= && j-k >= ;k++)
dp[i][j] += dp[i-][j-k];
}
}
long long p , q , g;
q = p = ;
for(int i = ;i < ;i++)
{
p += dp[n][i];
if(i >= m)
q += dp[n][i];
}
g = gcd(p , q);
p/=g;
q/=g;
printf("Case %d: ",cas);
if(q == ) printf("0\n");
else if (q == p) printf("1\n");
else {printf("%lld/%lld\n",q,p);}
}
}

动态规划——概率dp的更多相关文章

  1. HDU 4050 wolf5x(动态规划-概率DP)

    wolf5x Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  2. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

  3. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  4. 动态规划——数位dp

    通过先前在<动态规划——背包问题>中关于动态规划的初探,我们其实可以看到,动态规划其实不是像凸包.扩展欧几里得等是具体的算法,而是一种在解决问题中决策的思想.在不同的题目中,我们都需要根据 ...

  5. [总结-动态规划]经典DP状态设定和转移方程

    马上区域赛,发现DP太弱,赶紧复习补上. #普通DP CodeForces-546D Soldier and Number Game 筛法+动态规划 待补 UVALive-8078 Bracket S ...

  6. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  7. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  8. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  9. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

随机推荐

  1. Android开发手记(28) Handler和Looper

    Android的消息处理有三个核心类:Looper,Handler和Message.其实还有一个Message Queue(消息队列),但是MQ被封装到Looper里面了,我们不会直接与MQ打交道.平 ...

  2. ImageView 设置OnTouchListener

    ImageView的OnTouchListener,onTouch方法要返回true,MotionEvent.ACTION_UP,MotionEvent.ACTION_MOVE 才有效. 其实关于返回 ...

  3. UITextView/UITextField检测并过滤Emoji表情符号

    UITextView/UITextField检测并过滤Emoji表情符号 本人在开发过程中遇到过这种情况,服务器端不支持Emoji表情,因此要求客户端在上传用户输入时,不能包含Emoji表情.在客户端 ...

  4. servlet从xml提取数据登陆

    在xml文档下可以设置参数的初始值,在这里把他当成了数据库在用 <servlet> <description>This is the description of my J2E ...

  5. topcoder算法练习3

    SRM144 DIV1 1100 point Problem Statement      NOTE: There are images in the examples section of this ...

  6. WARN [main] conf.HiveConf (HiveConf.java:initialize(1488)) - DEPRECATED

    问题描述:hive 关于告警问题的解决:WARN  [main] conf.HiveConf (HiveConf.java:initialize(1488)) - DEPRECATED: Config ...

  7. Linux(Debian)下Maven的安装

    Maven的下载地址:http://maven.apache.org/download.cgi这里以最新的3.3.9版本为例进行安装,在这之前需要确保机器上已经安装了JDK. -- 在home文件夹中 ...

  8. MySQL5.7.9免安装版配置方法

    1. 解压MySQL压缩包    将下载的MySQL压缩包解压到自定义目录下,我的解压目录是:    "D:\Program Files\mysql-5.7.9-win32"    ...

  9. js 支持的原始数据类型

    原始数据类型: 数值型: 1.十进制数 <script> var a =12; a = -12 a = 12.4 a =.23e2 //=>23 a = 2e3 //=>200 ...

  10. jQuery幻灯片skitter-slider插件学习总结

    @(关键词)[skitter|jquery|网页幻灯片|slider] Skitter 是一个非常酷炫的jQuery网页幻灯片插件,支持非常多种酷炫幻灯片切换方式,下载前往官网,另有参考文档 下面简单 ...