poj3071 Football
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3075 | Accepted: 1558 |
Description
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.
Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.
Input
The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, andpii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double
data type instead of float
.
Output
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.
Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1
Sample Output
2
Hint
In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:
P(2 wins) | = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4) = p21p34p23 + p21p43p24 = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396. |
The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.
题意:
第一个队跟第二个对比赛,依次类推,赢了的比下一场。如图:
*
* *
* * * *
0 1 2 3 4 5 6 7
00 01 10 11 100 101 110 111
可以看出
//每队只和其在当轮相邻的队伍进行比赛
//第一轮00和01可以比赛,01和10就不可以比赛(因为分组不同,见题意)
//第二轮00x和01x进行比赛
//第三轮0xx和1xx比赛,
推出 if(((j>>(i-1))^1) == (k>>(i-1)))
//j和k可以进行比赛。
dp[i][j] += dp[i-1][k]*dp[i-1][j]*a[j][k];
//dp[i][j]表示第i轮,第j队打赢的概率。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n;
double a[][],dp[][];
int pow(int x)
{
int i,sum=;
for(i=;i<=x;i++)
sum*=;
return sum;
}
int main()
{
int i,j,m,k;
while(~scanf("%d",&n))
{
memset(dp,,sizeof(dp));
if(n==-)
break;
m=pow(n);
for(i=;i<m;i++)
for(j=;j<m;j++)
scanf("%lf",&a[i][j]);
for(i=;i<m-;i=i+)
{
dp[][i]=a[i][i+];
dp[][i+]=a[i+][i];
}
for(i=;i<=n;i++)
{
for(j=;j<m;j++)
{
for(k=;k<m;k++)
{
if(((j>>(i-))^) == (k>>(i-)))
dp[i][j] += dp[i-][k]*dp[i-][j]*a[j][k];
}
}
}
double mmax=;
int team;
for(i=;i<m;i++)
{
// printf("dp=%lf\n",dp[n][i]);
if(mmax<dp[n][i])
{
mmax=dp[n][i];
team=i;
}
}
printf("%d\n",team+);
}
return ;
}
poj3071 Football的更多相关文章
- poj3071 Football(概率dp)
poj3071 Football 题意:有2^n支球队比赛,每次和相邻的球队踢,两两淘汰,给定任意两支球队相互踢赢的概率,求最后哪只球队最可能夺冠. 我们可以十分显然(大雾)地列出转移方程(设$f[ ...
- POJ3071:Football(概率DP)
Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2 ...
- POJ3071 Football 【概率dp】
题目 Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, -, 2n. In eac ...
- POJ3071 Football 概率DP 简单
http://poj.org/problem?id=3071 题意:有2^n个队伍,给出每两个队伍之间的胜率,进行每轮淘汰数为队伍数/2的淘汰赛(每次比赛都是相邻两个队伍进行),问哪只队伍成为冠军概率 ...
- [poj3071]football概率dp
题意:n支队伍两两进行比赛,求最有可能获得冠军的队伍. 解题关键:概率dp,转移方程:$dp[i][j] + = dp[i][j]*dp[i][k]*p[j][k]$表示第$i$回合$j$获胜的概率 ...
- 动态规划之经典数学期望和概率DP
起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...
- 【POJ3071】Football - 状态压缩+期望 DP
Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2 ...
- 【poj3071】 Football
http://poj.org/problem?id=3071 (题目链接) 题意 ${2^n}$个队伍打淘汰赛,输的被淘汰.第1个队打第2个队,第3个队打第4个队······给出第i个队伍打赢第j个队 ...
- Football(POJ3071)
Football Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3469 Accepted: 1782 Descript ...
随机推荐
- (转)PHP获取今天、昨天、明天的日期
<?php echo "今天:".date("Y-m-d")."<br>"; echo "昨天:".d ...
- oracle sql语句
一.ORACLE的启动和关闭1.在单机环境下要想启动或关闭ORACLE系统必须首先切换到ORACLE用户,如下su - oracle a.启动ORACLE系统oracle>svrmgrlSVRM ...
- Windows下的多线程
Windows下的进程和Linux下的进程是不一样的,它比较懒惰,从来不执行任何东西,它只是为线程提供执行环境,然后由线程负责执行包含在进程的地址空间中的代码.当创建一个进程的时候,操作系统会自动创建 ...
- oracle 消除块竞争(hot blocks)
上篇日志提到了,那么高的负载,是存在数据块读竞争,下面介绍几个方法来消除块竟争 查找块竟争 SELECT p1 "file#", p2 "block#", p3 ...
- Oracle学习【语句查询】
基本查询语句any和all不能单独使用,必须和比较符一起使用>any 大于最小的例如:select * from emp where sal >any(1000,2000);<any ...
- Java的split方法说明
相信大家都经常使用String 的split方法,但是大家有没有遇到下面的这种情况: 大家想想下面的代码执行结果是什么 public static void main(String[] args) { ...
- DOM&SAX解析XML
在上一篇随笔中分析了xml以及它的两种验证方式.我们有了xml,但是里面的内容要怎么才能得到呢?如果得不到的话,那么还是没用的,解析xml的方式主要有DOM跟SAX,其中DOM是W3C官方的解析方式, ...
- Quartz.NET开源作业调度架构
Quartz.NET是一个开源的作业调度框架,是 OpenSymphony 的 Quartz API 的.NET移植,它用C#写成,可用于winform和asp.net应用中.它提供了巨大的灵活性而不 ...
- 正则过滤html标签
var html = "<p>好好学习,<br>天天向上</p>"; var re=/<[^>]+>/g; var text ...
- nginx服务器,php-fpm重启
1.重启nginx服务器:首先whereis nginx找到你的nginx命令执行文件所在目录,直接/usr/local/nginx/sbin/nginx -s reload 这个路径可能每个人不一样 ...