[BZOJ 3209] 花神的数论题 【数位统计】
题目链接: BZOJ - 3209
题目大意
设 f(x) 为 x 的二进制表示中 1 的个数。给定 n ,求 ∏ f(i) (1 <= i <= n) 。
题目分析
总体思路是枚举每一个 t ,算出 f(x) = t 的 x 有 y 个,然后将 t^y 算入答案中。
主要的过程是求 y ,也就是代码中的 Solve(t) 。
详见代码吧,我只能看别人的题解,自己想不出来QAQ
注意:WA警告!WA警告!
Warning!Warning!Warning!
在涉及到计算 a^b%p 的计算中,a 可以先 mod p ,但是 b 不可以!!!计算 b 的时候,因为 b 之后要作为指数,所以绝对不能取模!!!!!
在这道题中,组合数不能取模!!!Solve() 不能取模!!!因为这些都与指数有关!!
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; typedef long long LL; const int MaxL = 60 + 5;
const LL Mod = 10000007; LL n, Ans;
LL C[MaxL][MaxL];
int l, Bit[MaxL]; void Init_C() {
for (int i = 0; i <= 60; ++i) {
C[i][0] = 1;
for (int j = 1; j <= i; ++j)
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
} LL Solve(int x) {
LL ret = 0;
for (int i = l; i >= 1; --i) {
if (Bit[i] == 1) {
ret += C[i - 1][x];
--x;
}
if (x < 0) break;
}
return ret;
} LL Pow(LL a, LL b) {
LL ret = 1, f = a % Mod;
while (b) {
if (b & 1) {
ret *= f;
ret %= Mod;
}
b >>= 1;
f *= f;
f %= Mod;
}
return ret;
} int main()
{
Init_C();
while (scanf("%lld", &n) != EOF) {
++n;
l = 0;
while (n) {
Bit[++l] = n & 1;
n >>= 1;
}
Ans = 1ll;
for (int i = 1; i <= l; ++i)
Ans = Ans * Pow(i, Solve(i)) % Mod;
printf("%lld\n", Ans);
}
return 0;
}
[BZOJ 3209] 花神的数论题 【数位统计】的更多相关文章
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- bzoj 3209 花神的数论题——二进制下的数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...
- BZOJ 3209: 花神的数论题【数位dp】
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- [数位dp] bzoj 3209 花神的数论题
题意:中文题. 思路:和普通数位dp一样,这里转换成二进制,然后记录有几个一. 统计的时候乘起来就好了. 代码: #include"cstdlib" #include"c ...
- [BZOJ 3209]花神的数论题
一道简单的数位 dp 题 但是脑子里只有 __builtin_popcountll 了呢(自重) 看完题解后很快就理解了,而且有一种这么简单的题居然没想到做法真是不应该唉~的感觉 用 f[i] 表示 ...
- bzoj3209:3209: 花神的数论题
觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
随机推荐
- android十六进制颜色代码转换为int类型数值
android开发中将十六进制颜色代码转换为int类型数值方法:Color.parseColor("#00CCFF")返回int数值;
- java数组使用技巧
参考网上文章,总结了一下java数组使用技巧,如下: package com.beijing.array; import java.nio.ByteBuffer; import java.util.A ...
- MVC ASPX(webForm)视图引擎 <%:%> 与<%=%>的差别
控制器 using System; using System.Collections.Generic; using System.Linq; using System.Web; using Syste ...
- limit-进程句柄限制
在Linux下面部署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题,比如还有Squid做代理,当文件打开数到900多时速能就非常快的下降,有可 ...
- 计算机体系结构-内存调优IPC OOMK
man ipc [root@server1 proc]# man ipcIPC(2) Linux Programmer’s Manual ...
- Qt 学习之路:Canvas
在 QML 刚刚被引入到 Qt 4 的那段时间,人们往往在讨论 Qt Quick 是不是需要一个椭圆组件.由此,人们又联想到,是不是还需要其它的形状?这种没玩没了的联想导致了一个最直接的结果:除了圆角 ...
- (转载)linux那点事儿(中)
原文地址:http://www.cnblogs.com/fnng/archive/2012/03/19/2407162.html 本文只是转载供自己学习之用 2012-03-22 13:31 by 虫 ...
- ArrayBlockingQueue 源码阅读 问题(一)
今天阅读java.util.concurrent 中 ArrayBlockingQueue 的源码,发现其中有很多下面这行代码 final ReentrantLock lock = this.lock ...
- Java 原始数据类型转换
在开发中经常遇到数据类型转换的问题,大多数都是拿来强制转换,强制转换可能会出现你意想不到的问题: int a = -1; 我们经过多重转换之后:int b = (int)(char)(byte) a ...
- TOKEN的保存与验证
Token主要为了防止非本页数据的提交,防止重复提交. /** * * 保存TOKEN信息 * */ public void saveToken() { //此处生成md5串 string md5 = ...