BZOJ 1823 满汉全席
Description
Input
Output
Sample Input
3 4
m3 h1
m1 m2
h1 h3
h3 m2
2 4
h1 m2
m2 m1
h1 h2
m1 h2
Sample Output
BAD
HINT
Source
#include<stack>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 210
#define maxm 2010
int n,m,cnt,side[maxn],next[maxm],toit[maxm],dfn[maxn],id[maxn];
int tot,low[maxn],d[maxn],DFN;
stack <int> S; bool vis[maxn]; inline void init()
{
DFN = tot = cnt = ; memset(vis,false,*(n+));
memset(side,,*(n+)); memset(dfn,,*(n+));
} inline void add(int a,int b) { next[++cnt] = side[a]; side[a] = cnt; toit[cnt] = b; } inline void dfs(int now)
{
S.push(now); dfn[now] = low[now] = ++DFN;
for (int i = side[now];i;i = next[i])
{
if (vis[toit[i]]) continue;
if (!dfn[toit[i]]) dfs(toit[i]);
low[now] = min(low[toit[i]],low[now]);
}
if (low[now] == dfn[now])
{
++tot;
while (S.top() != now) id[S.top()] = tot,vis[S.top()] = true,S.pop();
id[S.top()] = tot,vis[S.top()] = true,S.pop();
}
} int main()
{
freopen("1823.in","r",stdin);
freopen("1823.out","w",stdout);
int T; scanf("%d",&T);
while (T--)
{
scanf("%d %d\n",&n,&m);
init();
while (m--)
{
char c1,c2; int a,b; bool o1,o2;
scanf("%c%d %c%d\n",&c1,&a,&c2,&b);
o1 = c1 == 'h'; o2 = c2 == 'h';
add((o1^)*n+a,o2*n+b);
add((o2^)*n+b,o1*n+a);
}
int i;
for (i = ;i <= n<<;++i) if (!dfn[i]) dfs(i);
for (i = ;i <= n;++i) if (id[i] == id[i+n]) { printf("BAD\n"); break; }
if (i <= n) continue;
printf("GOOD\n");
}
fclose(stdin); fclose(stdout);
return ;
}
BZOJ 1823 满汉全席的更多相关文章
- bzoj 1823: [JSOI2010]满汉全席 && bzoj 2199 : [Usaco2011 Jan]奶牛议会 2-sat
noip之前学的内容了,看到题竟然忘了怎么建图了,复习一下. 2-sat 大概是对于每个元素,它有0和1两种选择,必须选一个但不能同时选.这之间又有一些二元关系,比如x&y=1等等... 先把 ...
- BZOJ 1823: [JSOI2010]满汉全席( 2-sat )
2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...
- 【刷题】BZOJ 1823 [JSOI2010]满汉全席
Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而 ...
- bzoj 1823: [JSOI2010]满汉全席
#include<iostream> #include<cstdio> #include<cstring> using namespace std; ],next[ ...
- bzoj 1823: [JSOI2010]满汉全席【2-SAT+tarjan】
因为每种食材只有一份,所以两个评委的如果有要求同一种食材的两种做法就是不可行,用这个来建立2-SAT模型 然后跑tarjan判可行性即可 #include<iostream> #inclu ...
- 2-sat基础题 BZOJ 1823
http://www.lydsy.com/JudgeOnline/problem.php?id=1823 1823: [JSOI2010]满汉全席 Time Limit: 10 Sec Memory ...
- BZOJ 1823 JSOI 2010 盛宴 2-SAT
标题效果:有着n材料的种类,m陪审团. 每种材料具有两种不同的方法.每个法官都有两个标准.做出来的每一个法官的菜必须至少满足一个需求. 问:是否有这样一个程序. 思考:2-SAT经典的内置图形问题.因 ...
- 【BZOJ】1823: [JSOI2010]满汉全席(2-sat)
题目 传送门:QWQ 分析 2-sat模板(然而辣鸡如我还是调了好久) 代码 //bzoj 1823 2-sat #include <bits/stdc++.h> using namesp ...
- 2-SAT速成
本文只做总结性说明 2-SAT 2-SAT是k-SAT问题的一种,k-SAT问题在\(k>=3\)时已经被证明是NP完全问题 2-SAT问题定义比较简单 有n个布尔变量\(x_1-x_n\).给 ...
随机推荐
- 使用r.js进行前端repuirejs的合并压缩
安装 requirejs npm install -g requirejs 安装好后: 找到刚刚requirejs的安装目录,在该目录下找到r.js,并拷贝待压缩合并项目的根目录下 在项目根目录下创建 ...
- eclipse 上安装systemgui
http://wiki.eclipse.org/Linux_Tools_Project/PluginInstallHelp http://wiki.eclipse.org/Linux_Tools_Pr ...
- 2016年11月1日——jQuery源码学习笔记
1.instanceof运算符希望左操作数是一个对象,右操作数标识对象的类.如果左侧的对象是右侧类的实例,则表达式返回true,否则返回false 2.RegExp.exec() 如果 exec() ...
- PHP 中xampp不能启动服务器的问题
有时候别人电脑上面的XAMPP,你把安装文件拷贝下来后,会发现,自己的电脑上用不了 这个时候有很多种情况 1. 关闭你自己电脑上有可能暂用80端口的程序 2.D:\xampp\apache\conf\ ...
- UMEditor 二次开发技术实践
许多项目都会或多或少的结合许多第三的组件,恰好,遇到了UMeditor富文本组件,因为它及其精简,功能强大,有专业团队维护,所以,我选择了它,而且它出色的完成项目中的全部功能的需求,对此,我说一下,二 ...
- Android 巧妙实现图片和文字上下布局或者左右布局
最近去了一家新公司,然后开始做新的项目,看其代码发现了一个很巧妙的方法来实现图片在上面文字在下面的布局方式.只需要一个控件——RadioButton. 布局文件很简单,用来展示RadioBUtton的 ...
- asp.net mvc 通过修改路由规则来实现页面的URL多参数传递
[原文]http://blog.csdn.net/risingsun001/article/details/9068187 修改MVC3中的路由规则 在Global.asax.cs中,修改路由规则 原 ...
- Express在windows IIS上部署详解
最近公司在用Express+angularjs+wcf开发系统,让我在windows上部署系统,遇到不少问题,不过最后还是解决了,在IIS上部署系统, 首先windows需安装以下软件: 1.node ...
- 【BZOJ1500】【块状链表】维修数列
Description Input 输入文件的第1行包含两个数N和M,N表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一条命令,格式参见问题描述 ...
- 【POJ1195】【二维树状数组】Mobile phones
Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...