2226: [Spoj 5971] LCMSum

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 578  Solved: 259
[Submit][Status]

Description

Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n.

Input

The first line contains T the number of test cases. Each of the next T lines contain an integer n.

Output

Output T lines, one for each test case, containing the required sum.

Sample Input

3
1
2
5

Sample Output

1
4
55

HINT

Constraints

1 <= T <= 300000
1 <= n <= 1000000

  这道题将lcm转化为gcd并按照相同gcd分为一组的思路进行,巧妙地将题目转化为求小于等于n且与n互质数的和,而这个值时n*phi(n)/2

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1000010
typedef long long qword;
//segma(i*n/gcd(i,n))
//=n*segma(h(n/k)/k)
//h(a)表示与a互质数的和
bool pflag[MAXN];
int prime[MAXN],topp=-;
int phi[MAXN];
void init()
{
int i,j;
int x,y;
for (i=;i<MAXN;i++)
{
if (!pflag[i])
{
prime[++topp]=i;
phi[i]=i-;
}
for (j=;j<=topp && i*prime[j]<MAXN ;j++)
{
pflag[i*prime[j]]=true;
phi[i*prime[j]]=phi[i]*phi[prime[j]];
if (i%prime[j]==)
{
x=i;y=prime[j];
while (x%prime[j]==)
{
x/=prime[j];
y*=prime[j];
}
if (x==)
{
phi[i*prime[j]]=i*(prime[j]-);
}else
{
phi[i*prime[j]]=phi[x]*phi[y];
}
continue;
}
}
}
}
qword h(int x)
{
if (x==)return ;
return (qword)x*phi[x]/;
}
int main()
{
freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
int nn;
int n,i;
scanf("%d",&nn);
init();
while (nn--)
{
scanf("%d",&n);
qword ans=;
for (i=;i*i<n;i++)
{
if (n%i!=)continue;
ans+=(qword)n*h(n/i);
ans+=(qword)n*h(i);
}
if (i*i==n)
ans+=(qword)n*h(i);
printf("%lld\n",ans);
}
}

bzoj 2226: [Spoj 5971] LCMSum 数论的更多相关文章

  1. BZOJ 2226 [Spoj 5971] LCMSum | 数论拆式子

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2226 题解: 题目要求的是Σn*i/gcd(i,n) i∈[1,n] 把n提出来变成Σi/g ...

  2. BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论

    BZOJ 2226 [Spoj 5971] LCMSum 这道题和上一道题十分类似. \[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) ...

  3. BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常

    Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...

  4. BZOJ 2226 [Spoj 5971] LCMSum

    题解:枚举gcd,算每个gcd对答案的贡献,贡献用到欧拉函数的一个结论 最后用nlogn预处理一下,O(1)出答案 把long long 打成int 竟然没看出来QWQ #include<ios ...

  5. BZOJ2226: [Spoj 5971] LCMSum

    题解: 考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和. 这是有公式的f[i]=phi[i]*i/2 然后卡一卡时就可以过了. 代码: #include<cstdio> # ...

  6. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

  7. 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数

    题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...

  8. bzoj 2226 LCMSum 欧拉函数

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1123  Solved: 492[Submit][S ...

  9. 三种做法:BZOJ 2780: [Spoj]8093 Sevenk Love Oimaster

    目录 题意 思路 AC_Code1 AC_Code2 AC_Code3 参考 @(bzoj 2780: [Spoj]8093 Sevenk Love Oimaster) 题意 链接:here 有\(n ...

随机推荐

  1. [Usaco2006 Nov]Corn Fields牧场的安排 壮压DP

    看到第一眼就发觉是壮压DP 然后就三进制枚举子集吧. 这题真是壮压入门好题... 对于dp[i][j] 表示第i行,j状态下前i行的分配方案数. 那么dp[i][j]肯定是从i-1行转过来的 那么由于 ...

  2. java连接oracle的简单实例

    连接oracle的时候,要导入oracle驱动的jar包. 连接的时候,有statement和preparedstatement两种,从代码中可以看出不同. example: package com. ...

  3. hdu2011java

    多项式求和 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  4. RecyclerView实现瀑布流效果(图文详解+源码奉送)

    最近有时间研究了一下RecyclerView,果然功能强大啊,能实现的效果还是比较多的,那么今天给大家介绍一个用RecyclerView实现的瀑布流效果. 先来一张效果图: 看看怎么实现吧: 整体工程 ...

  5. Java基础知识强化之网络编程笔记08:TCP之客户端键盘录入服务器控制台输出

    1. 客户端: package cn.itcast_08; import java.io.BufferedReader; import java.io.BufferedWriter; import j ...

  6. RedHat7搭建MongoDB集群

    下载RPM安装包# wget -c -r -N -np -nd -L -nH https://repo.mongodb.org/yum/redhat/7/mongodb-org/stable/x86_ ...

  7. tar命令解压、压缩gz/bz2/xz文件

    1.处理.tar.gz 压缩:tar zcf FILE.tar.gz FILEDIR 解压:tar zxf FILE.tar.gz 2.处理.tar.bz2 压缩:tar jcf FILE.tar.b ...

  8. 调试php的soapCient

    try { import('@.Ext.xml'); header("Content-Type:text/html; charset=utf-8"); $soap = new So ...

  9. JavaScript小笔记の经典算法等....

    1.利用toString()里面的参数,实现各进制之间的快速转换: var n = 17; binary_string = n.toString(2); //->二进制"10001&q ...

  10. C#DbHelperOra,Oracle数据库帮助类 (转载)

    主要功能如下数据访问抽象基础类 主要是访问Oracle数据库主要实现如下功能 .数据访问基础类(基于Oracle),主要是用来访问Oracle数据库的. .得到最大值:是否存在:是否存在(基于Orac ...