6.6 random--伪随机数的生成
本模块提供了生成要求安全度不高的随机数。假设须要更高安全的随机数产生。须要使用os.urandom()或者SystmeRandom模块。
random.seed(a=None, version=2)
初始化随机数据的种子数值。假设a是None值,会取採用当前系统时间作为种子值。假设a是一个int类型的值。则会直接使用。參数version是版本号兼容,假设为版本号2时,对于str。bytes。bytearray採用int类型返回;在版本号1时,採用hash()返回。
样例:
#python 3.4
from random import *
r = seed()
print(r)
r = random()
print(r)
r = random()
print(r)
结果输出例如以下:
None
0.25563594631743225
0.8596359931999921
random.getstate()
获取当前随机数的环境状态,以便下次再使用。
样例:
#python 3.4
from random import *
r = seed()
print(r)
r = getstate()
print(r)
结果输出例如以下:
None
(3, (2147483648, 1806585935, 2218797231, 963762379, 2448530300, 4223961651, 2167919184, 3727107355, 2403035413,
...
1296424577, 1100183651, 306611027, 444923926, 1168100930, 624), None)
random.setstate(state)
恢复上一次获取的状态,上次的状态使用getstate()来获取。
样例:
#python 3.4
from random import *
r = seed()
print(r)
r = getstate()
print(random())
setstate(r)
print(random())
结果输出例如以下:
None
0.38424833141530745
0.38424833141530745
random.getrandbits(k)
返回指定k位数的随机整数值。
样例:
#python 3.4
from random import *
r = seed()
r = getrandbits(4)
print(r)
r = getrandbits(4)
print(r)
结果输出例如以下:
4
9
random.randrange(stop)
random.randrange(start, stop[, step])
返回一个指定范围内的随机值。stop是最大值的整数边界。start是起始值。step是每一个值之间的间隔。返回的值大于等于start,小于stop。
样例:
#python 3.4
from random import *
r = seed()
r = randrange(5)
print(r)
r = randrange(0, 10, 2)
print(r)
结果输出例如以下:
2
8
random.randint(a, b)
返回一个整数,它的范围是a <= N <=b。
样例:
#python 3.4
from random import *
r = seed()
r = randint(1, 2)
print(r)
r = randint(1, 2)
print(r)
结果输出例如以下:
2
1
random.choice(seq)
从一个非空的序列里返回一个元素,假设为空的序列就抛出异常InexError。
样例:
#python 3.4
from random import *
r = seed()
r = choice(['a', 'b', 'c'])
print(r)
r = choice(['a', 'b', 'c'])
print(r)
结果输出例如以下:
c
a
random.shuffle(x[, random])
对序列x进行随机移动元素的位置。
可选參数random是一个返回随机浮点数[0.0, 1.0)之间的函数。
样例:
#python 3.4
from random import *
r = seed()
l = ['a', 'b', 'c', 'd']
print(l)
r = shuffle(l)
print(r, l)
结果输出例如以下:
['a', 'b', 'c', 'd']
None ['b', 'd', 'a', 'c']
random.sample(population, k)
从序列population里随机地返回k个元素的序列。
样例:
#python 3.4
from random import *
r = seed()
l = ['a', 'b', 'c', 'd']
print(l)
r = sample(l, 3)
print(r)
结果输出例如以下:
['a', 'b', 'c', 'd']
['c', 'a', 'b']
random.random()
返回范围在[0.0, 1.0)之间的随机浮点数。
样例:
#python 3.4
from random import *
r = seed()
r = random()
print(r)
结果输出例如以下:
0.3916060348292988
random.uniform(a, b)
在a和b区间返回一个随机浮点数。假设a <= b则返回 a <= N <= b。假设 b < a则返回b <= N <= a。
样例:
#python 3.4
from random import *
r = seed()
r = uniform(1.0, 2.5)
print(r)
r = uniform(8.0, 2.5)
print(r)
结果输出例如以下:
1.6498941793878243
4.22188785768826
random.triangular(low, high, mode)
返回三角形分布的随机数, low <= N <= high。參数mode指明众数出现位置。
样例:
#python 3.4
from random import *
r = seed()
r = triangular(-3, 8, 0.8)
print(r)
r = triangular(-3, 8, 10)
print(r)
结果输出例如以下:
1.5058316902823226
0.27606363975774073
random.betavariate(alpha, beta)
返回 beta分布的随机数,參数alpha是大于0的值,參数beta是大于0的值。返回值的区间在0和1之间。
样例:
#python 3.4
from random import *
r = seed()
r = betavariate(1, 2)
print(r)
r = betavariate(1, 2)
print(r)
结果输出例如以下:
0.11852634010531515
0.029427309916706654
random.expovariate(lambd)
返回指数分布的随机数。
參数lambd是正值。刚从0到正无限大的值。參数lambd是负值。则返回负无穷大到0的值。
样例:
#python 3.4
from random import *
r = seed()
r = expovariate(1)
print(r)
r = expovariate(-3)
print(r)
结果输出例如以下:
0.2003044059401706
-0.1785055187658876
random.gammavariate(alpha, beta)
伽玛分布的随机数。
x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha
样例:
#python 3.4
from random import *
r = seed()
r = gammavariate(1, 2)
print(r)
r = gammavariate(1, 2)
print(r)
结果输出例如以下:
0.5413328891492575
4.139239480698503
random.gauss(mu, sigma)
返回高斯分布的随机数。
參数mu是一个平均数,sigma是绝对偏差。
样例:
#python 3.4
from random import *
r = seed()
r = gauss(1, 2)
print(r)
r = gauss(1, 2)
print(r)
结果输出例如以下:
2.8846358328647543
-0.7848726717436769
random.lognormvariate(mu, sigma)
对数分布的随机数。mu是一个平均数,sigma是一个绝对偏差。
样例:
#python 3.4
from random import *
r = seed()
r = lognormvariate(1, 2)
print(r)
r = lognormvariate(1, 2)
print(r)
结果输出例如以下:
3.4904102483152704
1.7560462679767879
random.normalvariate(mu, sigma)
正态分布的随机数。參数mu是一个平均数。sigma是标准方差。
样例:
#python 3.4
from random import *
r = seed()
r = normalvariate(1, 2)
print(r)
r = normalvariate(1, 2)
print(r)
结果输出例如以下:
1.7317832780485172
2.1163922446170247
random.vonmisesvariate(mu, kappa)
返回冯米塞斯分布的随机数。參数mu是平均角度,使用弧度表示,范围在0到2*pi之间。
參数kappa是集中程度參数。是一个大于等于0的值。
样例:
#python 3.4
from random import *
r = seed()
r = vonmisesvariate(1, 2)
print(r)
r = vonmisesvariate(1, 2)
print(r)
结果输出例如以下:
0.9831582967095295
2.3340486646429404
random.paretovariate(alpha)
返回帕累托分布的随机数。參数alpha是一个模型參数。
样例:
#python 3.4
from random import *
r = seed()
r = paretovariate(2)
print(r)
r = paretovariate(2)
print(r)
结果输出例如以下:
1.1031942255648155
2.3128974772541597
random.weibullvariate(alpha, beta)
返回韦伯分布的随机数。參数alpha是缩放系统,參数beta是模型參数。
样例:
#python 3.4
from random import *
r = seed()
r = weibullvariate(2, 1)
print(r)
r = weibullvariate(2, 1)
print(r)
结果输出例如以下:
1.1790484913990984
5.519287151687428
class random.SystemRandom([seed])
使用操作系统底层产生随机数,可是不是全部系统平台都是可用的。
样例:
#python 3.4
from random import *
r = SystemRandom()
print(r)
print(r.random())
结果输出例如以下:
<random.SystemRandom object at 0x03180070>
0.466491601955791
蔡军生 QQ:9073204 深圳
6.6 random--伪随机数的生成的更多相关文章
- random——伪随机数生成模块
random——伪随机数生成模块 转自:https://blog.csdn.net/zhtysw/article/details/79978197 该模块包含构造伪随机数生成器的多个方法.对于整数,伪 ...
- C语言伪随机数的生成
在stdlib.h中,有两个函数与伪随机数的生成有关:srand和rand.C语言中,随机数表有很多列,srand函数是根据其参数(unsigned类型)来获得一个种子(seed),根据种子来设置从哪 ...
- 【转载】C#使用Random类来生成指定范围内的随机数
C#的程序应用的开发中,可以使用Random随机数类的对象来生成相应的随机数,通过Random随机数对象生成随机数的时候,支持设置随机数的最小值和最大值,例如可以指定生成1到1000范围内的随机数.R ...
- numpy伪随机数的生成
numpy伪随机数的生成 normal函数 可以用normal来得到一个标准正态分布的4×4样本数组 >>> import numpy as np >>> samp ...
- python的random模块(生成验证码)
python的random模块(生成验证码) random模块常用方法 random.random() #生成0到1之间的随机数,没有参数,float类型 random.randint(1, 3) # ...
- 生成随机数的几种方法、Math.random()随机数的生成、Random()的使用
第一种方法使用:System.currentTimeMillis(); final long l = System.currentTimeMillis(); final int rs = (int) ...
- Java利用Math.random()方法随机生成A-Z的字符
package reverse; import java.text.DecimalFormat; public class Reverse { public static void main(Stri ...
- random模块,生成随机数
1.random.choice(sep) 从一个序列中随机选取一个元素返回 >>> list1=["a",1,2,3,"b"] >> ...
- js中Math.random()生成指定范围数值的随机数
http://www.111cn.net/wy/js-ajax/57062.htm Math.random() 这个方法相信大家都知道,是用来生成随机数的.不过一般的参考手册时却没有说明如何用这个方法 ...
- [转载]C# Random 生成不重复随机数
Random 类 命名空间:System 表示伪随机数生成器,一种能够产生满足某些随机性统计要求的数字序列的设备. 伪随机数是以相同的概率从一组有限的数字中选取的.所选数字并不具有完全的随机性,因为它 ...
随机推荐
- Socket编程的简单实现
关于socket编程的简单实现,主要分成客户端.服务端两个部分.实现如下: 1.服务端代码如下,注意:server端要优先于client端启动 2.client端代码,以及启动后客户端和服务端之间的简 ...
- Assembly之instruction之JC
JC Jump if carry setJHS Jump if higher or same Syntax JC label JHS label Operation If C = 1: PC + 2 ...
- 【Linux】 JDK安装及配置 (linux-tar.gz版)
安装环境:Linux(CentOS 7 64位 版) JDK安装:tar.gz为解压后就可以使用的版本,这里使用jdk-8u211-linux-x64.tar.gz版,安装到/usr/java/(us ...
- 梦想CAD控件图层COM接口知识点
梦想CAD控件图层COM接口知识点 一.新建图层 主要用到函数说明: _DMxDrawX::AddLayer 增加新的图层.详细说明如下: 参数 说明 BSTR pszName 图层名 c#中实现代码 ...
- java_IO_2
1.字节流 InputStream(抽象类) package ioStudy; import java.io.File; import java.io.FileInputStream; import ...
- 01Hypertext Preprocessor
Hypertext Preprocessor PHP即Hypertext Preprocessor是一种被广泛使用的开放源代码多用途动态交互性站点的强有力的服务器端脚本语言尤其适用于 Web开发人员可 ...
- ZOJ - 3993 - Safest Buildings (数学)
参考:https://blog.csdn.net/KuHuaiShuXia/article/details/78408194 题意: 描述了吃鸡刷圈的问题,给出楼的坐标点,和两次刷圈的半径R和r,现在 ...
- vticker.js--垂直滚动插件
一.使用要求 列表必须是ul>li的格式 html代码 <div class=" myvticker'"> <ul> <li>1.新闻标题 ...
- linux ifstat-统计网络接口流量状态
推荐:更多linux 性能监测与优化 关注:linux命令大全 ifstat命令就像iostat/vmstat描述其它的系统状况一样,是一个统计网络接口活动状态的工具.ifstat工具系统中并不默认安 ...
- 斯特林公式 hdu1018
杭电上面1018>>点击测试<< 思路:当问到阶乘的值时候,用万进制来写:但是问阶乘值的位数的时候,就可以用斯特林公式了 log10(2*pi*n)/2+n*log10(n/e ...