古典概型的样本总量是一定的,且每种可能的可能性是相同的,

1、中位数:median(x)

2、百分位数:quantile(x)或者quantile(x,probe=seq(0,1,0.2))  #后面这个是设置参数,零到一的范围,每隔0.2算一次

  不知道叫啥的很方便的函数:fivenum(x,na.rm=TRUE)  #输出五个数最大值、最小值、下四分位数、上四分位数、中位数

3、协方差:用于看两组数据之间的关系,看看是不是有一定的关联性

  他有一个相关系数r,r越接近1,则相关性越高,反之,越接近零就越低

  cov(x[2:4])  #这就是求协方差矩阵

  cor(x[2:4])  #这是求协方差r矩阵

4、研究变量之间的关系:

  1、函数关系:有精确地函数表达式,关系非常明确,比如银行利率和收益的关系

  2、相关关系:非确定关系,有关系蛋是没那么明确,比如身高和体重的关系,可分为下面的两种

      一、平行关系:相关分析(一元、多元),比如一个人的物理成绩与数学成绩好坏的关系,表面看起来是有很强的相关的,其实是背后有很多因素起作用

              cor.test(x1,x2)(相关系数显著性的假设检验)    #输出的数据时:95%可信度下,相关系数所在的范围

      二、依存关系:回归分析(一元、多元),一个变量决定另一个变量,起决定作用的是自变量,另一个是因变量,x是自变量,y是因变量

                lm(y~1+x)  #一元线性回归分析,会输出它的公式,截距和斜率。其调用形式是:fitted.model <- lm(formula,data=data.frame)

                     #formula是公式   data.frame为数据框  结果放在fitted.model中

                     #例如 fm2<-lm(y~x1+x2,data=production)   适应于y关于x1和x2的多元回归模型

                      #y~1+x或者y~x均表示y=a+bx有截距形式的线性模型。而通过原点的线性模型可以表达为:y~x-1或y~x+0或y~0+x

                 summary:使用summary(里面放回归分析的结果),来更详细的参数与结果,coefficients这一栏是描述计算的结果,后面的Pr(>|t|)是p_value,

                    算出的值对于这组数据合不合理,越小越好最后面星号越多越好,说明结果算的很好,模型建得很好,有时可能是两颗星,一颗星,

                    甚至一个点,甚至连一个点都没有,说明算出来的东西越不合理。

                    做这个线性回归是有前提的:1、这个样本变量是正态分布的2、自变量和因变量是线性的关系,如果这两个前提有一个不满足,

                    则这个模型的合理性和准确性不能保证。有一个检验模型合不合理的指标,就是Multiple R-squared,也就是R的平方

                    ,相关系数平方,越接近一越合理。函数最下面的结果是F检验和它的p值

                   anova:方差分析函数,anova(),也可以得到summary函数结果的一部分,也只有一部分

                 predict:z=data.frame(x=185) ; predict(a,z)  #这是一个预测函数,a是已经建好的线性模型,z是输入的数值,可以得到结果,很方便

               

              多元回归:不止两组数据进行线性回归的计算,可能有三个四个五个数据进行,就要用到一些分析方法,比如逐步回归:其有两种方式,

                   向前引用法(从零开始,加一组,再加一组,再加一组数据看看),向后剔除法(先把所有数据都算进去,减一组,再减一组,

                   再减一组数据看看),逐步筛选法(一边加一边减)

                   sl <- step(s,direction="forward")    这是多元线性回归的公式,direction="forward"   方向等于forward是向前引用法,

                      backward是向后剔除法,both是两者都有,这个函数是通过判断AIC的值来进行数据的删除和添加,知道找到最优组合

                      但有时这个全自动化的函数也会出错,这时候就需要手工去进行筛选,add1()增加 和 drop1()删除      这两个函数。

                      比如drop1(s):s是已经用step函数处理过的模型,或者是新lm模型,然后会告诉你删除其中一个数据,

                      AIC的变化,然后你可以根据它的结果重新建立模型,再去看这个模型怎么样

                   会用到进行lm的更新,公式:new_lm<-updata(原来的lm, .~. , +新的数据),这是加入新的数据,减去原来的是一组数据,可以把

                   加号变为减号,减号后面是你要删除的数据

                   得出一个好的结果靠这些指标衡量:RSS(Residual standard error:残差平方和)越小越好

                             R的平方(Multiple R-squared:相关性系数)  越大越接近1越好

                             AIC(Akaike information criterion : 赤池信息准则  越小越好(大多数时候是非常好用的,但有时候是不好用的)

5、回归诊断                   

通常回归诊断需要诊断都有下面这些东西:

  1、样本是否符合正态分布假设?            

    有些数据是符合的,有些是不符合的,所以需要我们了解样本是不是正态分布

  2、是否存在离群值导致模型产生较大误差?      

    数据是抽提出来的,误差不能避免,有时正、负误差会抵消掉,对结果就没有影响。但有时候误差会偏离正常值很远的数据,这种数据我们叫它离群值,离群值对模型

  的影响非常大,可能使得这个模型跟它原本的模样完全的偏离

    如何发现这些离群值并把它剔除出去,使得这个模型回归正轨,这也是回归诊断中需要讨论的东西

  3、线性模型是否合理?

    我们假设这个关系是线性的,但是自然界中有很多关系未必是线性的,可能是二次多项式,也可能是一个指数的关系,还可能是更复杂的关系,

  甚至有的时候我们没办法写出它的表达式。我们需要知道我们做这个线性的假设是否合理,我们怎么样去判断

  4、误差是否满足独立性、等方差、正态分布等假设条件

    误差一般也是满足独立性、等方差、正态分布的,所谓独立性是指误差与y,也就是因变量是没有关系的,误差不会随着y的值变化。

  我们也要确定误差是否满足上述条件

    还有自变量中真正独立的有哪些?这里的所谓独立是指:这个自变量不会跟随其他自变量变化

  5、是否存在多重共线性?

     多重共线性:所有的自变量中,有不是真正独立的自变量,这种情况可能会产生一个情况,就是计算过程中出现的一些矩阵是不可逆的,表现出来的就是这个矩阵的

  行列式或者是这个矩阵的最小特征值非常接近零。由于在求回归模型的过程中需要求这矩阵的逆,如果这个矩阵是在这种非常接近不可逆的情况下,那很可能这个误差

  非常非常的大,使得这个模型基本上失去了意义

一、正态分布检验

函数:shopiro.test()  #如果算出来是不符合的就可以认为样本不符合正态分布,如果符合就认为它符合正态分布

  shopiro.test(x$x1)  #如果这个的结果中的p-value很小,就说明这个统计学意义很明显,需要拒绝假设,也就是说这个样本是不符合正态分布的。如果这个p-value很接近一

             说明这个样本不能被否定为不是正态分布,也就可以认识它是正态分布

二、多重共线性检验

这里的检验原理是,把样本的数据组成一个矩阵,再乘以它的转置得到一个新的矩阵,然后再求这个矩阵的特征根,用特征根的最大值除以最小值,得到一个比值,这个值就叫kappa值,一般若kappa值小于100,就认为多重共线性的程度很小,若在100~1000之间,就认为存在中等程度或较强的多重共线性。若kappa>1000,则认为存在严重的多重共线性

函数/步骤:1、先data.frame()把数据组合好

      2、在使用cor()求相关系数矩阵

         3、kappa()   #得到kappa值

         4、eigen(x)   #这个函数是用来求矩阵的特征根,在这里主要是看哪个样本中有很严重的多重共线性

1、广义回归线性模型

有时这个模型不是标准的线性的,我们也想给他做出来,这时候可以用广义线性模型

函数/步骤:1、先用data.frame()把数据组合好

      2、glm(模型,family=binormal,data=xx)  #family=binormal    的意思就是我们的因变量是二元的,1或者0。比如牛张不张嘴,张就是1,不张就是0

      3、最后得到P=exp(y的系数+x的系数*x) / (1+exp(y的系数+x的系数*x))

2、非线性回归

有时这个线就是曲线,这时候就不能用线性回归,就要用有曲线的。

比如  x <- lm(y~log(x))  y <-lm(log(y)~x)  z <- lm(log(y)~log(x))这些东西

拟合的问题:拟合不足(把幂函数拟合为直线),过度拟合(把误差都算进去,导致输入正确的数会偏离非常大)

R软件中有一个函数:nls()--非线性模型的参数估计    视频里面没有仔细讲  就算了吧^-^

R语言入门视频笔记--9--随机与数据描述分析的更多相关文章

  1. R语言入门视频笔记--10--数据挖掘

    这里来挖掘超市购物车数据. 名词: 1.挖掘数据集:购物篮数据 2.挖掘目标:关联规则 3.关联规则:牛奶=>鸡蛋[支持度=2%,置信度=60%] 4.指出度:分析中的全部事务的2%同时购买了牛 ...

  2. R语言入门视频笔记--5--自定义函数

    自定义函数 你可以输出一段代码,创建一个你自己定义的函数 蛋是如果你两个自定义函数的名字重复的话,后面的会把前面的替换掉 举个栗子: hanshu1 <- function(x)  sqrt(v ...

  3. R语言入门视频笔记--4--R的数据输入

    输入 R的数据输入可以大体三种: 1.键盘输出 2.从文本文件导入 3.从Excel中导入数据 一.从键盘输入 首先创建一个数据框,玩玩嘛,瞎建一个 mydata <- data.frame(a ...

  4. R语言入门视频笔记--8--数据框

    一.数据框 使用data.frame函数生成数据框 x <- c(20122014101:20122014128) y <- rnorm(28,85,18) #生成28个平均数为85,方差 ...

  5. R语言入门视频笔记--6--R函数之cat、format、switch函数

    一.cat 猫  怎么就变成一个输出函数了呢? cat  一个输出函数,功能和print有相同之处 我们一起比较看看 1.cat(“hellow world”)或cat('hellow world') ...

  6. R语言入门视频笔记--3-1--矩阵与数组

    生成一个新矩阵,多用一些参数吧这次: x <- c(12,13,14,15) rname <- c("R1","R2") nname <- c ...

  7. R语言入门视频笔记--3--列表list

    list <- (stud.id = 1234,stud.name="Tom",stud,marks=c(18,3,14,25,19)) #生成一个列表,里面有学生id,学生 ...

  8. R语言入门视频笔记--2--一些简单的命令

    一.对象 1.列举当前内存中的对象 ls() 2.删除不需要的对象 rm(某对象名称) 3.查看向量长度 length(某向量名称) 4.查看向量类型 mode(某向量名称) 二.函数 1.seq函数 ...

  9. R语言入门视频笔记--1

    一.数据框简要 可输入来访问mtcars这个系统自带的数据框中的mpg列 mtcars$mpg 或者输入 mtcars[c("mpg","cyl")] 来访问两 ...

随机推荐

  1. 在vue组件库中不能使用v-for

    没事的,有点时候编辑器报错,但运行不一定出错, 在vue组件中注意template标签

  2. js正则函数match、exec、test、search、replace、split使用集合

    match 方法 使用正则表达式模式对字符串执行查找,并将包含查找的结果作为数组返回. stringObj.match(rgExp) 参数 stringObj 必选项.对其进行查找的 String 对 ...

  3. 人脸识别源代码Open cv

    #include <stdio.h> #include <string.h> #include "cv.h" #include "cvaux.h& ...

  4. 摘抄 Promise原理

    1.简单的promise: //极简promise雏形 function Promise(fn){ var value = null; callbacks = [];//callback为数组,因为可 ...

  5. HTML5触摸事件

    touchstart .touchmove .touchend 事件 touchstart事件:当手指触摸屏幕时触发,即使有一个手指放在屏幕上也会触发. touchmove事件:当手指在屏幕上滑动时触 ...

  6. Git学习——把文件推送到远程仓库

    本地仓库与GitHub仓库关联 git remote add origin git@github.com:<github账户名>/<github的仓库名>.git 把本地库的所 ...

  7. Ubuntu18.04 下联想电脑 无法连接WIFI问题解决

    联想笔记本电脑Ubuntu系统下无法开启无线硬件开关的解决.总结了3个方法,方便以后使用. 方法一: 一.问题描述: 本人使用联想拯救者14IFI笔记本在安装Ubuntu系统时会出现无线硬件开关关闭的 ...

  8. 菜鸟的《Linux程序设计》学习——MySQL数据库安装、配置及基本操作

    1. MySQL数据库: 在涉及到一些大型的Web系统或者嵌入式软件的开发时,都少不了用数据库来管理数据.在Windows操作系统下,使用过各种各样的数据库,如:sqlServer.Oracle.My ...

  9. Java面试——String、StringBuider以及StringBuffer的区别和使用场景

    1.  String.StringBuider.StringBuffer的区别  String是不可变的对象,因此在每次对String类型进行改变的时候,都会生成一个新的String对象,然后将指针指 ...

  10. 00031_ArrayList集合中常用的方法

    1.ArrayList集合提供的一些常用方法 import java.util.ArrayList; public class ArrayListDemo01 { public static void ...