Codeforces225B - Well-known Numbers
Description
定义\(k\)-bonacci数列\(\{F_n\}\):\(F_i=0 \ (i<k),F_i=1 \ (i=k),F_i=\sum_{j=i-k}^{i-1}F_j\)
给出\(s(s\leq10^9)\)和\(k(k\leq10^9)\),将\(s\)拆成若干个\(k\)-bonacci数之和。
Solution
结论:重复从\(s\)中减掉最大的\(F_i\),一定能使\(s=0\)。
可以用数学归纳法证明。
若对于正整数\(k\),\(\forall s\in [0,F_k-1]\)该结论成立,则\(\forall s\in [F_k,F_{k+1}-1]\),其下最大的\(F_i\)为\(F_k\),而\(s-F_k\in [0,F_{k-1}-1]\),其必然也能按上述方法减至0。
而因为\(k=1\)时该结论成立,所以\(\forall s\)该结论均成立。
Code
//Well-known Numbers
#include <cstdio>
#include <algorithm>
using namespace std;
int const N=1e5+10;
long long f[N];
int n,m,ans[N];
int main()
{
int s,k; scanf("%d%d",&s,&k);
int n; f[1]=1;
for(n=2;f[n-1]<s;n++)
for(int j=max(1,n-k);j<=n-1;j++) f[n]+=f[j];
int m=0;
for(int i=n-1;i>=1&&s;i--) if(f[i]<=s) ans[++m]=f[i],s-=f[i];
if(m<2) ans[++m]=0;
printf("%d\n",m);
for(int i=1;i<=m;i++) printf("%d ",ans[i]);
puts("");
return 0;
}
P.S.
看标签猜结论系列binary search greedy number theory。不过根本不需要binary search啊!
Codeforces225B - Well-known Numbers的更多相关文章
- Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range
在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- [LeetCode] Add Two Numbers II 两个数字相加之二
You are given two linked lists representing two non-negative numbers. The most significant digit com ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- [LeetCode] Bitwise AND of Numbers Range 数字范围位相与
Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...
- [LeetCode] Valid Phone Numbers 验证电话号码
Given a text file file.txt that contains list of phone numbers (one per line), write a one liner bas ...
- [LeetCode] Consecutive Numbers 连续的数字
Write a SQL query to find all numbers that appear at least three times consecutively. +----+-----+ | ...
- [LeetCode] Compare Version Numbers 版本比较
Compare two version numbers version1 and version1.If version1 > version2 return 1, if version1 &l ...
随机推荐
- AJPFX浅谈Java性能优化之finalize 函数
★finalize 函数的调用机制 俺经常啰嗦:“了解本质机制的重要性”.所以今天也得先谈谈 finalize 函数的调用机制.在聊之前,先声明一下:Java虚拟机规范,并没有硬性规定垃圾回收该不该搞 ...
- phpstorm设置代码块快捷方式
File -> Settings -> Live Templates
- Oracle EXPDP and IMPDP
一.特点 • 可通过 DBMS_DATAPUMP 调用 • 可提供以下工具: – expdp – impdp – 基于 Web 的界面 • 提供四种数据移动方法: – 数据文件复制 – 直接路径 – ...
- 洛谷 P2515 [HAOI2010]软件安装
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- swift的static和class修饰符---What is the difference between static func and class func in Swift?
Special Kinds of Methods Methods associated with a type rather than an instance of a type must be ma ...
- 【整理】iview Tree数据格式问题,无限递归树处理数据
iview Tree数据格式问题,无限递归树处理数据 https://juejin.im/post/5b51a8a4e51d455d6825be20
- vs code 插件list
vs code 插件list
- 关于MessageBox返回值
风格设置MB_OK. 此时无论点击确定还是点击X,都返回IDOK.风格设置MB_OKCANCEL,点击确认返回IDOK,点击取消和X都返回IDCANCEL.风格设置MB_YESNO,点击是返回IDYE ...
- curl 模拟post请求
curl -H "Content-Type:application/json" -X POST --data '{"openId":"xxxxxxx& ...
- ES5的数组方法
参考:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array Array.prot ...