Codeforces225B - Well-known Numbers
Description
定义\(k\)-bonacci数列\(\{F_n\}\):\(F_i=0 \ (i<k),F_i=1 \ (i=k),F_i=\sum_{j=i-k}^{i-1}F_j\)
给出\(s(s\leq10^9)\)和\(k(k\leq10^9)\),将\(s\)拆成若干个\(k\)-bonacci数之和。
Solution
结论:重复从\(s\)中减掉最大的\(F_i\),一定能使\(s=0\)。
可以用数学归纳法证明。
若对于正整数\(k\),\(\forall s\in [0,F_k-1]\)该结论成立,则\(\forall s\in [F_k,F_{k+1}-1]\),其下最大的\(F_i\)为\(F_k\),而\(s-F_k\in [0,F_{k-1}-1]\),其必然也能按上述方法减至0。
而因为\(k=1\)时该结论成立,所以\(\forall s\)该结论均成立。
Code
//Well-known Numbers
#include <cstdio>
#include <algorithm>
using namespace std;
int const N=1e5+10;
long long f[N];
int n,m,ans[N];
int main()
{
int s,k; scanf("%d%d",&s,&k);
int n; f[1]=1;
for(n=2;f[n-1]<s;n++)
for(int j=max(1,n-k);j<=n-1;j++) f[n]+=f[j];
int m=0;
for(int i=n-1;i>=1&&s;i--) if(f[i]<=s) ans[++m]=f[i],s-=f[i];
if(m<2) ans[++m]=0;
printf("%d\n",m);
for(int i=1;i<=m;i++) printf("%d ",ans[i]);
puts("");
return 0;
}
P.S.
看标签猜结论系列binary search greedy number theory。不过根本不需要binary search啊!
Codeforces225B - Well-known Numbers的更多相关文章
- Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range
在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- [LeetCode] Add Two Numbers II 两个数字相加之二
You are given two linked lists representing two non-negative numbers. The most significant digit com ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- [LeetCode] Bitwise AND of Numbers Range 数字范围位相与
Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...
- [LeetCode] Valid Phone Numbers 验证电话号码
Given a text file file.txt that contains list of phone numbers (one per line), write a one liner bas ...
- [LeetCode] Consecutive Numbers 连续的数字
Write a SQL query to find all numbers that appear at least three times consecutively. +----+-----+ | ...
- [LeetCode] Compare Version Numbers 版本比较
Compare two version numbers version1 and version1.If version1 > version2 return 1, if version1 &l ...
随机推荐
- 享元模式及php实现
享元模式: 享元模式(Flyweight Pattern):运用共享技术有效地支持大量细粒度对象的复用.系统只使用少量的对象,而这些对象都很相似,状态变化很小,可以实现对象的多次复用.由于享元模式要求 ...
- 移动端1px边框伪类宽高计算
移动端1px边框在手机上看显得比较粗,于是我们用伪类结合css3缩放的方法去设置线条,但是如果设置div的一条边,水平线就设置宽度100%,垂直线就设置高度100%,那么如果是div的四条边呢?宽高1 ...
- Hello Shell
shell是Linux平台的瑞士军刀,能够自动化完成很多工作.要了解UNIX 系统中可用的 Shell,可以使用 cat /etc/shells 命令.使用 chsh 命令 更改为所列出的任何 She ...
- vue-devtools在google浏览器下安装扩展
下载vue-devtools,地址: https://github.com/vuejs/vue-devtools 解压到对应目录,eg: D:\ProgramFiles\vue-devtools-de ...
- life of a NPTL pthread
这是2013年写的一篇旧文,放在gegahost.net上面 http://raison.gegahost.net/?p=91 March 7, 2013 life of a NPTL pthread ...
- 洛谷 P2053 [SCOI2007]修车
题目描述 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待 ...
- 微信小程序开发系列五:微信小程序中如何响应用户输入事件
微信小程序开发系列教程 微信小程序开发系列一:微信小程序的申请和开发环境的搭建 微信小程序开发系列二:微信小程序的视图设计 微信小程序开发系列三:微信小程序的调试方法 微信小程序开发系列四:微信小程序 ...
- 微信小程序开发系列二:微信小程序的视图设计
大家如果跟着我第一篇文章 微信小程序开发系列一:微信小程序的申请和开发环境的搭建 一起动手,那么微信小程序的开发环境一定搭好了.效果就是能把该小程序的体验版以二维码的方式发送给其他朋友使用. 这个系列 ...
- SOE 第五章
SEO第五章 本次课目标: 1. 掌握代码优化 2. 掌握内链优化 一.代码优化 1)<h>标签 代表网页的标题,总共6个级别(h1-h6) 外观上显示字体的大小的修改,其中<h ...
- Python 访问字典(dictionary)中元素
访问python字典中元素的几种方式 一:通过“键值对”(key-value)访问: print(dict[key]) dict = {1: 1, 2: 'aa', 'D': 'ee', 'Ty': ...