题目好神仙……这个叫长链剖分的玩意儿更神仙……

考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\(g[i][j]\)对点深度相同,他们到LCA的距离为\(d\),且他们的LCA到\(i\)的距离为\(d-j\)。或者换句话来说就是以\(i\)为根的子树中有这么多个点对,而且没有第三个点去和这些点对匹配,第三个点不在\(i\)的子树中且到\(i\)的距离为\(j\),\(g[i][j]\)表示这些点对的个数

设\(u\)为当前点,\(v\)为某一子树,那么转移方程如下

\[f[u][i]+=f[v][i+1]
\]

\[g[u][i-1]+=g[v][i]
\]

\[g[u][i+1]+=f[u][i+1]*f[v][i]
\]

\[ans+=f[u][i-1]*g[v][i]+g[u][i+1]*f[v][i]
\]

如果是原题的\(n\leq 5000\)已经足够了,然而当\(n\leq 100000\)的时候很明显gg了

发现状态数组的第二维实际上跟这个节点的深度有关,于是考虑用长链剖分优化。(不知道什么是长链剖分的可以看看蒟蒻的笔记)简单来说记每一个节点深度最大的儿子为它的重儿子。因为第一次转移的时候有\(f[u][i]=f[v][i-1],g[u][i]=g[v][i+1]\),于是可以类似于dsu on tree的思想,对于每个重儿子的信息直接继承,轻儿子暴力跑一遍。重儿子的信息可以直接用指针来达到\(O(1)\)的转移

这个时间复杂度大概是\(O(n)\)的,对于每个点转移的复杂度为\(\sum dep[v]-dep[son[u]]=\sum dep[v]-dep[u]+1\),然后所有点的加起来除了叶子结点都互相抵消,于是总的复杂度为\(O(n)\)

空间复杂度也是\(O(n)\),因为非叶节点的空间都是由它所在重链的儿子转移来的,所以对每个叶节点开正比于此重链长度的空间即可

//minamoto
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[1<<21],*p1=buf,*p2=buf;
int read(){
int res,f=1;char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e5+5,M=1005;
int head[N],Next[N<<1],ver[N<<1],tot;
inline void add(int u,int v){ver[++tot]=v,Next[tot]=head[u],head[u]=tot;}
ll memp[N*5],*f[N],*g[N],*to=memp+5,ans;
int n,dep[N],mx[N];
void dfs(int u,int fa){
mx[u]=u;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa){
dep[v]=dep[u]+1,dfs(v,u);
if(dep[mx[v]]>dep[mx[u]])mx[u]=mx[v];
}
}
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa&&(mx[v]!=mx[u]||u==1)){
v=mx[v],to+=dep[v]-dep[u]+1;
f[v]=to,g[v]=(to+=1),to+=(dep[v]-dep[u])*2+1;
}
}
}
void dp(int u,int fa){
for(int i=head[u];i;i=Next[i]){
int v=ver[i];if(v==fa)continue;dp(v,u);
if(mx[v]==mx[u])f[u]=f[v]-1,g[u]=g[v]+1;
}
ans+=g[u][0],f[u][0]=1;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];if(v==fa||mx[v]==mx[u])continue;
for(int j=0;j<=dep[mx[v]]-dep[u];++j)
ans+=f[u][j-1]*g[v][j]+g[u][j+1]*f[v][j];
for(int j=0;j<=dep[mx[v]]-dep[u];++j){
g[u][j-1]+=g[v][j];
g[u][j+1]+=f[u][j+1]*f[v][j];
f[u][j+1]+=f[v][j];
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),add(u,v),add(v,u);
while(to!=memp)*to=0,--to;*to=0,++to;
dep[1]=1;dfs(1,0),dp(1,0);
printf("%lld\n",ans);return 0;
}

BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)的更多相关文章

  1. 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP

    [BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...

  2. bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...

  3. BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP

    题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...

  4. BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分

    上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点 ...

  5. BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)

    题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...

  6. 【bzoj4543】[POI2014]Hotel加强版

    题目 抄题解.jpg 发现原来的\(O(n^2)\)的换根\(dp\)好像行不通了呀 我们考虑非常牛逼的长链剖分 我们设\(f[x][j]\)表示在\(x\)的子树中距离\(x\)为\(j\)的点有多 ...

  7. bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分

    题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...

  8. BZOJ4543 POI2014 Hotel加强版 【长链剖分】【DP】*

    BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 ...

  9. 【BZOJ3522】【BZOJ4543】【POI2014】Hotel 树形DP 长链剖分 启发式合并

    题目大意 ​ 给你一棵树,求有多少个组点满足\(x\neq y,x\neq z,y\neq z,dist_{x,y}=dist_{x,z}=dist_{y,z}\) ​ \(1\leq n\leq 1 ...

随机推荐

  1. 九度oj 题目1206:字符串连接

    题目1206:字符串连接 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:5117 解决:2373 题目描述: 不借用任何字符串库函数实现无冗余地接受两个字符串,然后把它们无冗余的连接起来 ...

  2. [luoguP1136] 迎接仪式(DP)

    传送门 每个字母只有两种选择,变成另一个或者不变. 所以f[i][j][k]表示前i个字母有j个j变成z,有k个z变成j 只需要比较j==k时的答案就行 #include <cstdio> ...

  3. LOJ#541. 「LibreOJ NOIP Round #1」七曜圣贤

    有一辆车一开始装了编号0-a的奶茶,现有m次操作,每次操作Pi在[-1,b),若Pi为一个未出现过编号的奶茶,就把他买了并装上车:若Pi为一个在车上的奶茶,则把他丢下车:否则,此次操作为捡起最早丢下去 ...

  4. MongoDB小结08 - update【$pull】

    它可以删除所匹配的值,如果[1,1,2,1] 执行pull 1 后,只剩下[2]

  5. CSS聊天气泡

    概述 谷歌效果图如下: ie效果图如下: 完整代码 <!DOCTYPE html> <html> <head> <meta charset="gbk ...

  6. SAS学习笔记 - 基本原理与概念

    1.赋值符号 由一个尖括号和一个符号组成,可以从左到右也可以从右到左,即“->”或者“<-”. 赋值号也可以使用等号“=”. 如果对象已经存在,那么原先的值会被覆盖.除了可以赋一个数值,还 ...

  7. 计算机常识--win7 删除文件、拒绝訪问等等,所有提示权限不够 解决的方法

    本来都不想写这些东西的,可是又常常遇到,还是记录一下吧! 一键获取管理员的最高权限 创建一个txt文件,然后将其后缀改为.reg格式:内容例如以下 Windows Registry Editor Ve ...

  8. symfony could not load type 'datetime'

    当用curd生成控制器后,当修改的时候,会有这个提示,解决方法 在orm中通过事务的方式填充时间,然后把生成的form中的文件的时间段去掉 $builder ->add('title') -&g ...

  9. 正则表达式的捕获组(capture group)在Java中的使用

    原文:http://blog.csdn.net/just4you/article/details/70767928 ------------------------------------------ ...

  10. jqury-validate表单验证

    首先需要引入插件:jquery.validate.js这个插件. 然后对需要验证的表单实现js: $("#add-firewalls-form").validate({ submi ...