BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)
题目好神仙……这个叫长链剖分的玩意儿更神仙……
考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\(g[i][j]\)对点深度相同,他们到LCA的距离为\(d\),且他们的LCA到\(i\)的距离为\(d-j\)。或者换句话来说就是以\(i\)为根的子树中有这么多个点对,而且没有第三个点去和这些点对匹配,第三个点不在\(i\)的子树中且到\(i\)的距离为\(j\),\(g[i][j]\)表示这些点对的个数
设\(u\)为当前点,\(v\)为某一子树,那么转移方程如下
\]
\]
\]
\]
如果是原题的\(n\leq 5000\)已经足够了,然而当\(n\leq 100000\)的时候很明显gg了
发现状态数组的第二维实际上跟这个节点的深度有关,于是考虑用长链剖分优化。(不知道什么是长链剖分的可以看看蒟蒻的笔记)简单来说记每一个节点深度最大的儿子为它的重儿子。因为第一次转移的时候有\(f[u][i]=f[v][i-1],g[u][i]=g[v][i+1]\),于是可以类似于dsu on tree的思想,对于每个重儿子的信息直接继承,轻儿子暴力跑一遍。重儿子的信息可以直接用指针来达到\(O(1)\)的转移
这个时间复杂度大概是\(O(n)\)的,对于每个点转移的复杂度为\(\sum dep[v]-dep[son[u]]=\sum dep[v]-dep[u]+1\),然后所有点的加起来除了叶子结点都互相抵消,于是总的复杂度为\(O(n)\)
空间复杂度也是\(O(n)\),因为非叶节点的空间都是由它所在重链的儿子转移来的,所以对每个叶节点开正比于此重链长度的空间即可
//minamoto
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[1<<21],*p1=buf,*p2=buf;
int read(){
int res,f=1;char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e5+5,M=1005;
int head[N],Next[N<<1],ver[N<<1],tot;
inline void add(int u,int v){ver[++tot]=v,Next[tot]=head[u],head[u]=tot;}
ll memp[N*5],*f[N],*g[N],*to=memp+5,ans;
int n,dep[N],mx[N];
void dfs(int u,int fa){
mx[u]=u;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa){
dep[v]=dep[u]+1,dfs(v,u);
if(dep[mx[v]]>dep[mx[u]])mx[u]=mx[v];
}
}
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa&&(mx[v]!=mx[u]||u==1)){
v=mx[v],to+=dep[v]-dep[u]+1;
f[v]=to,g[v]=(to+=1),to+=(dep[v]-dep[u])*2+1;
}
}
}
void dp(int u,int fa){
for(int i=head[u];i;i=Next[i]){
int v=ver[i];if(v==fa)continue;dp(v,u);
if(mx[v]==mx[u])f[u]=f[v]-1,g[u]=g[v]+1;
}
ans+=g[u][0],f[u][0]=1;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];if(v==fa||mx[v]==mx[u])continue;
for(int j=0;j<=dep[mx[v]]-dep[u];++j)
ans+=f[u][j-1]*g[v][j]+g[u][j+1]*f[v][j];
for(int j=0;j<=dep[mx[v]]-dep[u];++j){
g[u][j-1]+=g[v][j];
g[u][j+1]+=f[u][j+1]*f[v][j];
f[u][j+1]+=f[v][j];
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),add(u,v),add(v,u);
while(to!=memp)*to=0,--to;*to=0,++to;
dep[1]=1;dfs(1,0),dp(1,0);
printf("%lld\n",ans);return 0;
}
BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)的更多相关文章
- 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP
[BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...
- bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...
- BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP
题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...
- BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分
上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点 ...
- BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)
题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...
- 【bzoj4543】[POI2014]Hotel加强版
题目 抄题解.jpg 发现原来的\(O(n^2)\)的换根\(dp\)好像行不通了呀 我们考虑非常牛逼的长链剖分 我们设\(f[x][j]\)表示在\(x\)的子树中距离\(x\)为\(j\)的点有多 ...
- bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分
题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...
- BZOJ4543 POI2014 Hotel加强版 【长链剖分】【DP】*
BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 ...
- 【BZOJ3522】【BZOJ4543】【POI2014】Hotel 树形DP 长链剖分 启发式合并
题目大意 给你一棵树,求有多少个组点满足\(x\neq y,x\neq z,y\neq z,dist_{x,y}=dist_{x,z}=dist_{y,z}\) \(1\leq n\leq 1 ...
随机推荐
- 学习javascript中的事件——事件处理程序
事件就是用户或浏览器自身执行的某种动作.诸如 click.load 和 mouseover ,都是事件的名字.而响应某个事件的函数就叫做事件处理程序(或事件侦听器).事件处理程序的名字以“on”开头, ...
- jQuery学习之------html()、text()和val()
jQuery学习之------html().text()和val() .html(),.text()和.val()的差异总结: (来源:慕课网) .html(),.text(),.val()三种方法 ...
- 关于OPENSSL的EVP函数的使用
4月份没什么做,就是做了OPENSSL的 加密和解密的应用,现在公开一下如何调用OPENSSL对字符串进行加密和解密,当中也学会了对加密数据进行BASE64编码,现在公开一下代码,在这感谢GITHUB ...
- String replaceAll-正则匹配-截取以指定字符开头,以指定字符结尾的字符串
scala代码块 截取以某个字符开头,以某个字符结尾的字符串 def main(args: Array[String]): Unit = { val s = "{{a61,a2,a3},{b ...
- HDU 1079 简单博弈
判断下一步能否到达必胜态,如果可以当前状态就是必败态,否则当前状态记为必胜态 #include <cstdio> #include <cstring> #include < ...
- HDU 2280 状压DP
用dfs找到状态的最优解 且那个正方形块可以由两个水平块组成,所以无需考虑 #include <cstdio> #include <cstring> #include < ...
- 2.3 comparator(比较器)
1.comparator是java的一种机制,用来帮助我们给相同对象的不同属性排序 2.Comparable接口,是一个对象本身就已经支持自比较所需要实现的接口,如String,Integer自己就已 ...
- python 安装依赖几个问题---HttpScan
https://blog.csdn.net/chenggong2dm/article/details/61923420 https://www.cnblogs.com/caochuangui/p/59 ...
- Google Protocol Buffer 的使用(一)
一.什么是Google Protocol Buffer下面是官网给的解释:Protocol buffers are a language-neutral, platform-neutral exten ...
- python中的is判断引用的对象是否一致,==判断值是否相等
python中的is判断引用的对象是否一致,==判断值是否相等 a = 10 b = 20 list = [1,2,3,4,5] print(a in list) print(b not in lis ...