BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)
题目好神仙……这个叫长链剖分的玩意儿更神仙……
考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\(g[i][j]\)对点深度相同,他们到LCA的距离为\(d\),且他们的LCA到\(i\)的距离为\(d-j\)。或者换句话来说就是以\(i\)为根的子树中有这么多个点对,而且没有第三个点去和这些点对匹配,第三个点不在\(i\)的子树中且到\(i\)的距离为\(j\),\(g[i][j]\)表示这些点对的个数
设\(u\)为当前点,\(v\)为某一子树,那么转移方程如下
\]
\]
\]
\]
如果是原题的\(n\leq 5000\)已经足够了,然而当\(n\leq 100000\)的时候很明显gg了
发现状态数组的第二维实际上跟这个节点的深度有关,于是考虑用长链剖分优化。(不知道什么是长链剖分的可以看看蒟蒻的笔记)简单来说记每一个节点深度最大的儿子为它的重儿子。因为第一次转移的时候有\(f[u][i]=f[v][i-1],g[u][i]=g[v][i+1]\),于是可以类似于dsu on tree的思想,对于每个重儿子的信息直接继承,轻儿子暴力跑一遍。重儿子的信息可以直接用指针来达到\(O(1)\)的转移
这个时间复杂度大概是\(O(n)\)的,对于每个点转移的复杂度为\(\sum dep[v]-dep[son[u]]=\sum dep[v]-dep[u]+1\),然后所有点的加起来除了叶子结点都互相抵消,于是总的复杂度为\(O(n)\)
空间复杂度也是\(O(n)\),因为非叶节点的空间都是由它所在重链的儿子转移来的,所以对每个叶节点开正比于此重链长度的空间即可
//minamoto
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[1<<21],*p1=buf,*p2=buf;
int read(){
int res,f=1;char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e5+5,M=1005;
int head[N],Next[N<<1],ver[N<<1],tot;
inline void add(int u,int v){ver[++tot]=v,Next[tot]=head[u],head[u]=tot;}
ll memp[N*5],*f[N],*g[N],*to=memp+5,ans;
int n,dep[N],mx[N];
void dfs(int u,int fa){
mx[u]=u;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa){
dep[v]=dep[u]+1,dfs(v,u);
if(dep[mx[v]]>dep[mx[u]])mx[u]=mx[v];
}
}
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa&&(mx[v]!=mx[u]||u==1)){
v=mx[v],to+=dep[v]-dep[u]+1;
f[v]=to,g[v]=(to+=1),to+=(dep[v]-dep[u])*2+1;
}
}
}
void dp(int u,int fa){
for(int i=head[u];i;i=Next[i]){
int v=ver[i];if(v==fa)continue;dp(v,u);
if(mx[v]==mx[u])f[u]=f[v]-1,g[u]=g[v]+1;
}
ans+=g[u][0],f[u][0]=1;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];if(v==fa||mx[v]==mx[u])continue;
for(int j=0;j<=dep[mx[v]]-dep[u];++j)
ans+=f[u][j-1]*g[v][j]+g[u][j+1]*f[v][j];
for(int j=0;j<=dep[mx[v]]-dep[u];++j){
g[u][j-1]+=g[v][j];
g[u][j+1]+=f[u][j+1]*f[v][j];
f[u][j+1]+=f[v][j];
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),add(u,v),add(v,u);
while(to!=memp)*to=0,--to;*to=0,++to;
dep[1]=1;dfs(1,0),dp(1,0);
printf("%lld\n",ans);return 0;
}
BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)的更多相关文章
- 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP
[BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...
- bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...
- BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP
题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...
- BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分
上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点 ...
- BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)
题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...
- 【bzoj4543】[POI2014]Hotel加强版
题目 抄题解.jpg 发现原来的\(O(n^2)\)的换根\(dp\)好像行不通了呀 我们考虑非常牛逼的长链剖分 我们设\(f[x][j]\)表示在\(x\)的子树中距离\(x\)为\(j\)的点有多 ...
- bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分
题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...
- BZOJ4543 POI2014 Hotel加强版 【长链剖分】【DP】*
BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 ...
- 【BZOJ3522】【BZOJ4543】【POI2014】Hotel 树形DP 长链剖分 启发式合并
题目大意 给你一棵树,求有多少个组点满足\(x\neq y,x\neq z,y\neq z,dist_{x,y}=dist_{x,z}=dist_{y,z}\) \(1\leq n\leq 1 ...
随机推荐
- codevs 3971 航班
题目描述 Description B 国有N 座城市,其中1 号是这座国家的首都. N 座城市之间有M 趟双向航班.i 号点的转机次数定义为:从1 号点到i ,最少需要转机几 次.如果1 根本无法到达 ...
- Codeforces 631B Print Check【模拟】
题意: 按顺序给定列和行进行涂色,输出最终得到的方格颜色分布. 分析: 记录下涂的次序,如果某个元素的横和列都被涂过,那么就选择次序最大的颜色. 代码: #include<iostream> ...
- 2017-10-02-morning
T1 一道图论神题(god) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图 ...
- 技术杂记之:在阿里云centos7上部署JDK MYSQL TOMCAT
今日小编闲来无事,乘着公司新项目即将上线之际,在阿里云上整了一台centos作为测试机.原本以为一个小时搞定,结果还是花了一点小小时间.不管怎么说,记录下来,给各位小白当成课后甜点吧. 价格 先上价格 ...
- MongoDB小结24 - 索引简介2
索引的名字 集合中每个索引都有一个字符串类型的名字,来唯一标识索引. 服务器通过名字来操作或者删除索引. 要注意的是,索引名有字符个数限制,所以索引创建时一定要用自定义的名字,如 db.user.en ...
- nopcommerce 电商商城 ASP.NET 开源系统
nopcommerce 电商商城 ASP.NET 开源系统
- Servlet学习笔记(八)—— 文件下载
一.文件下载概述 比如图片或者HTML这类静态资源,仅仅要在浏览器中打开正确的网址就行下载.仅仅要资源放在应用程序文件夹或者其下的子文件夹中,但不在WEB-INF下.Servlet/JSP容器就会将资 ...
- 【面试】iOS 开发面试题(一)
1. #import 跟#include 又什么差别,@class呢, #import<> 跟 #import""又什么差别? 答:#import是Objectiv ...
- 第二十七篇:Windows驱动中的PCI, DMA, ISR, DPC, ScatterGater, MapRegsiter, CommonBuffer, ConfigSpace
近期有些人问我PCI设备驱动的问题, 和他们交流过后, 我建议他们先看一看<<The Windows NT Device Driver Book>>这本书, 个人感觉, 这本书 ...
- Objective-C语言的 if ( self = [super init] )
我们先假设如今自己创建了个类.我们起名叫MyObject,继承于NSObject. 继承知道吧,就是你这个子类(MyObject)假设什么都不写的话,和父类(NSObject)就是一模一样的. OC里 ...