【HDU 3037】Saving Beans(卢卡斯模板)
Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.
Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
Input
The first line contains one integer T, means the number of cases.
Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
Output
You should output the answer modulo p.
Sample Input
2
1 2 5
2 1 5
Sample Output
3
3
Hint
For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
Source
2009 Multi-University Training Contest 13 - Host by HIT
题解
求C(n+m),
Lucas定理:
B是非负整数,p是质数。AB写成p进制:\(A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]\)。
则组合数\(C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p\)同余
即:$Lucas(n,m,p)=c(n%p,m%p)\times Lucas(n/p,m/p,p) $
参考代码
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=100005;
ll fac[N];
void Init(int p){
fac[0]=1LL;
for(int i=1;i<=p;i++) fac[i]=fac[i-1]*i%p;
}
ll qpow(ll a,ll b,ll p){
ll ans=1;
for(int i=b;i;i>>=1,a=(a*a)%p)
if(i&1) ans=(ans*a)%p;
return ans;
}
ll C(ll n,ll m,ll p){
if(n<m) return 0;
return fac[n]*qpow(fac[n-m],p-2,p)%p*qpow(fac[m],p-2,p)%p;
}
ll lucas(int n,int m,int p){
if(m==0) return 1;
return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}
ll Lucas(ll n,ll m,ll p) {
ll ret=1;
while(n&&m){
ll a=n%p,b=m%p;
if(a<b) return 0;
ret = (ret*fac[a]*qpow(fac[b]*fac[a-b]%p, p-2, p)) % p;
n/=p;
m/=p;
}
return ret;
}
int main(){
for(int T=read();T;T--){
int n=read(),m=read(),p=read();
Init(p);
printf("%lld\n",lucas(n+m,m,p));
}
return 0;
}
【HDU 3037】Saving Beans(卢卡斯模板)的更多相关文章
- hdu 3037 Saving Beans(组合数学)
hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...
- hdu 3037 Saving Beans Lucas定理
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 3037 Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu 3037——Saving Beans
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- Hdu 3037 Saving Beans(Lucus定理+乘法逆元)
Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...
- HDU 3037 Saving Beans(Lucas定理模板题)
Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...
- HDU 3037 Saving Beans (Lucas法则)
主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...
- HDU 3037 Saving Beans(Lucas定理的直接应用)
解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...
- HDU 3037 Saving Beans (数论,Lucas定理)
题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...
- HDU 3073 Saving Beans
Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...
随机推荐
- hdu3938 Portal 离线+并查集
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; int ...
- POJ3417(树上差分)
会卡vector. ; int n, m, Ans; ], to[maxn * ], tot; int vis[maxn], f[maxn]; int d[maxn], sum[maxn]; vect ...
- string类常用方法3
- XSS漏洞解析(二)
上篇我们讲了XSS的一些相关的内容,这篇我们就直接上代码demo解决实际问题吧. 主要的问题是xssfilter的编写,我们直接去网上找一下框架,一般有js,php,java等语言都有相关的XSS的相 ...
- idea安装mybatis插件
简介 mybatis_plus主要的作用是自动导航,如下图 点击箭头会跳转到对应的dao接口中,同样,dao接口中也有这样的箭头,点击之后会跳转到对应的sql映射语句处. 还有一个功能就是检查mapp ...
- laravel关联用户
参考文档:模型关联-反向关联 belongsToor 模型层 app/Post.php public function user() { return $this->belongsTo('\Ap ...
- C# 图片打印杂谈
日常开头水一下,看了下上次博客,一年零八天了,啧啧,奢侈. 最近这个工作挺满意的,是我想要的发展方向,后续要做机器学习,现在得先把公司之前堆积的问题解决了. 谈人生到此结束,还是说正题吧.(感觉这标题 ...
- SQL——将两列合并成一列
将两列合并连接成一列,需要注意的是列的格式必须是NVARCHAR或者VARCHAR类型 ), call_uuid, ) +','+agent_code ' PerDate 1 ,980408102 ...
- SAP成都研究院安德鲁:自己动手开发一个Chrome Extension
各位好,我叫何金鑫(He Andrew), 团队同事亲切地称呼在下为安德鲁.如果你在附近找到wifi热点名为 「安德鲁森面包房5g」,可能是我就在附近,我们可以去喝杯咖啡,聊聊最近有趣的东西. 鄙人现 ...
- (转)用@Resource注解完成属性装配
http://blog.csdn.net/yerenyuan_pku/article/details/52858878 前面我们讲过spring的依赖注入有两种方式: 使用构造器注入. 使用属性set ...