Problem Description


Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

Input


The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

Output


You should output the answer modulo p.

Sample Input


2
1 2 5
2 1 5

Sample Output


3
3

Hint


For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.

The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:

put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

Source


2009 Multi-University Training Contest 13 - Host by HIT

题解

求C(n+m),

Lucas定理:

B是非负整数,p是质数。AB写成p进制:\(A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]\)。

则组合数\(C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p\)同余

即:$Lucas(n,m,p)=c(n%p,m%p)\times Lucas(n/p,m/p,p) $

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=100005;
ll fac[N];
void Init(int p){
fac[0]=1LL;
for(int i=1;i<=p;i++) fac[i]=fac[i-1]*i%p;
}
ll qpow(ll a,ll b,ll p){
ll ans=1;
for(int i=b;i;i>>=1,a=(a*a)%p)
if(i&1) ans=(ans*a)%p;
return ans;
}
ll C(ll n,ll m,ll p){
if(n<m) return 0;
return fac[n]*qpow(fac[n-m],p-2,p)%p*qpow(fac[m],p-2,p)%p;
}
ll lucas(int n,int m,int p){
if(m==0) return 1;
return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}
ll Lucas(ll n,ll m,ll p) {
ll ret=1;
while(n&&m){
ll a=n%p,b=m%p;
if(a<b) return 0;
ret = (ret*fac[a]*qpow(fac[b]*fac[a-b]%p, p-2, p)) % p;
n/=p;
m/=p;
}
return ret;
}
int main(){
for(int T=read();T;T--){
int n=read(),m=read(),p=read();
Init(p);
printf("%lld\n",lucas(n+m,m,p));
}
return 0;
}

【HDU 3037】Saving Beans(卢卡斯模板)的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  6. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  7. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  8. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  9. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  10. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. 给Clouderamanager集群里安装基于Hive的大数据实时分析查询引擎工具Impala步骤(图文详解)

    这个很简单,在集群机器里,选择就是了,本来自带就有Impala的. 扩展博客 给Ambari集群里安装基于Hive的大数据实时分析查询引擎工具Impala步骤(图文详解)

  2. The Django Book学习笔记 04 模板

    如果使用这种方法制作文章肯定不是一个好方法,尽管它便于你理解是怎么工作的. def current_datetime(request): now = datetime.datetime.now() h ...

  3. April Fools Contest 2017 D

    Description Input The only line of the input contains a string of digits. The length of the string i ...

  4. Educational Codeforces Round 18 B

    Description n children are standing in a circle and playing the counting-out game. Children are numb ...

  5. 洛谷 P3400 仓鼠窝

    卡常 #pragma GCC optimize(2) #include<cstdio> #include<algorithm> #include<cstring> ...

  6. 今天发现一个汉字转换成拼音的模块,记录一下,直接pip install xpinyin即可

    http://blog.csdn.net/qq_33232071/article/details/50915760

  7. js 获取最后一个字符

    方法一: str.charAt(str.length - 1) 方法二: str.subStr(str.length-1,1) 方法三:    var str = "123456" ...

  8. poj2441 Arrange the Bulls

    思路: 状态压缩dp.需要一点优化,否则容易超时. 实现: #include <cstdio> #include <vector> #include <cstring&g ...

  9. QQ面板拖拽(慕课网DOM事件探秘)(下)

    2.鼠标事件坐标获取 function fnDown(event) { var event = event || window.event; var oDrag = document.getEleme ...

  10. 自定义 TypeHandler

    自定义TypeHandler分为三个步骤: 1.编写自定义TypeHandler,并继承自抽象类BaseTypeHandler<T>,实现抽象方法 2.在mybatis-config.xm ...