题目描述:

$zhx$有一个棵$n$个点的树,每条边有个权值。

定义一个连通块为一个点集与使这些点连通的所有边(这些点必须连通)。

定义一个连通块的权值为这个连通块的边权和(如果一个连通块只包含一个点,那么它的权值为$0$)。

$zhx$想找一个包含$1$号点的连通块送给他的妹子,所以他希望你求出包含$1$号点的所有连通块中权值第$k$小的连通块的权值。

题解:

非常裸的可持久化可并堆。

经典的$k$短路要求维护绕多远+终点,而它维护总边权+可选边集。

维护边集时需要可持久化可并堆。

还是经典操作,要么扔掉上一条边换上次优,要么在边集中找一个最优然后更新边集。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
const int MOD = ;
const int M = *N;
typedef long long ll;
template<typename T>
inline void read(T&x)
{
T f = ,c = ;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
int n,k,rt[N],wy[M];
ll ww[M];
struct edc
{
int x;
ll d;
edc(){}
edc(int x,ll d):x(x),d(d){}
friend bool operator < (edc a,edc b)
{
return a.d>b.d;
}
}tp;
int tot,tw;
struct node
{
int ls,rs,dis,tl;
ll v;
}p[M];
int merge1(int x,int y)
{
if(!x||!y)return x+y;
if(p[x].v>p[y].v)swap(x,y);
p[x].rs = merge1(p[x].rs,y);
if(p[p[x].ls].dis<p[p[x].rs].dis)swap(p[x].ls,p[x].rs);
p[x].dis=p[p[x].rs].dis+;
return x;
}
int merge(int x,int y)
{
if(!x||!y)return x+y;
if(p[x].v>p[y].v)swap(x,y);
int u = ++tot;
p[u] = p[x],p[u].rs = merge(p[u].rs,y);
if(p[p[u].ls].dis<p[p[u].rs].dis)swap(p[u].ls,p[u].rs);
p[u].dis = p[p[u].rs].dis+;
return u;
}
priority_queue<edc>q;
ll ans;
int main()
{
freopen("tt.in","r",stdin);
read(n),read(k);
for(int f,w,i=;i<n;i++)
{
read(f),read(w);
p[++tot].dis=,p[tot].tl=i+,p[tot].v=w;
rt[f] = merge1(rt[f],tot);
}
k--;
tw=;
ww[tw] = p[rt[]].v;
wy[tw] = rt[];
q.push(edc(,ww[]));
while(k&&!q.empty())
{
tp = q.top();
q.pop();
k--;
int u = tp.x;
ans = ww[u];
if(!k)break;
int ls = p[wy[u]].ls,rs = p[wy[u]].rs;
int tmp = merge(ls,rs);
if(tmp)
{
tw++;
ww[tw] = ww[u]-p[wy[u]].v+p[tmp].v;
wy[tw] = tmp;
q.push(edc(tw,ww[tw]));
}
tw++;
wy[tw] = merge(tmp,rt[p[wy[u]].tl]);
ww[tw] = ww[u]+p[wy[tw]].v;
if(wy[tw])q.push(edc(tw,ww[tw]));
}
printf("%lld\n",ans%MOD);
return ;
}

OVOO的更多相关文章

  1. 【CH 弱省互测 Round #1 】OVOO(可持久化可并堆)

    Description 给定一颗 \(n\) 个点的树,带边权. 你可以选出一个包含 \(1\) 顶点的连通块,连通块的权值为连接块内这些点的边权和. 求一种选法,使得这个选法的权值是所有选法中第 \ ...

  2. IntelliJ IDEA sass环境配置及常见报错处理

    1.下载安装ruby,网上教程很多的,安装完之后在命令行输入ruby -v检查一下是否安装成功了.(注意安装的时候要勾选第二项).

  3. GitHub创建个人主页

    在GitHub,一个项目对应唯一的Git版本库,创建一个新的版本库就是创建一个新的项目.访问仪表板(Dashboard)页面,如图3-1,可以看 到关注的版本库中已经有一个,但自己的版本库为零.在显示 ...

  4. 面向初学者的指南:创建时间序列预测 (使用Python)

    https://blog.csdn.net/orDream/article/details/100013682 上面这一篇是对 https://www.analyticsvidhya.com/blog ...

随机推荐

  1. Navicat Premium连接服务器数据库

    解决Navicat 连接服务器失败的问题 由于服务器的安全问题,有些东西默认是关闭的.就像远程连接服务器的数据库一样,如果默认是每个IP都能访问,安全性就会大大降低,甚至没有安全性可言.但是由于项目需 ...

  2. HDU5145:5145 ( NPY and girls ) (莫队算法+排列组合+逆元)

    传送门 题意 给出n个数,m次访问,每次询问[L,R]的数有多少种排列 分析 \(n,m<=30000\),我们采用莫队算法,关键在于区间如何\(O(1)\)转移,由排列组合知识得到,如果加入一 ...

  3. POJ2718【DFS】

    题意: 给你0到9之间的数,然后让你搞成两个数,求一个最小差异值(被组合的数不允许出现前导0) 思路:最小差异那么肯定是有一个整数长n/2,另一个长n-n/2,搜一下就好了. code: #inclu ...

  4. IIS7的FTP出错: 451 No mapping for the unicode character exists in the target multi-byte code page

    提示:IIS7的FTP出错: 451 No mapping for the unicode character exists in the target multi-byte code page 今天 ...

  5. tarjan有向图的强连通

    强连通:在有向图G中,两个顶点间至少存在一条路径,则两个点强连通. 强连通图:在有向图中,每两个顶点都强连通,则有向图G就是一个强连通图. 强连通分量:在非强连通图中的极大强连通子图,就称为强连通分量 ...

  6. iOS 上传的图片在HTML上显示时,图片方向信息(EXIF Orientation)异常

    将iPhone 6s拍摄的照片上传到服务器之后, 在Web网页上看到图片被逆时针旋转了90度, 这让我很惆怅呐! 出现这个问题其实是因为上传的图片为.jpg格式,.jpg文件含有EXIF信息, 其中E ...

  7. @ConfigurationProperties和@EnableConfigurationProperties配合使用

    https://blog.csdn.net/u010502101/article/details/78758330 @ConfigurationProperties注解主要用来把properties配 ...

  8. Headmaster's Headache UVA - 10817

    UVA-10817 ans[i][s1][s2]表示考虑前i个人时,有至少1人教的科目集合为s1,有至少2人教的科目集合为s2时的最少工资集合用一个数字表示,转换成二进制后从后面开始数第i位的状态(1 ...

  9. python关于文件的一些记录

    1.文件打开: file("data.txt")或open("data.txt")注意不要漏了文件的后缀.(不加参数时,file为你默认为'r',reading ...

  10. AJPFX总结Collection集合(下)

    List集合特有方法 特有方法.凡是可以操作角标的方法都是该体系特有的方法. 增          add(index,element);在指定位置添加元素          addAll(index ...