Reading Data

There are a few principal functions reading data into R.

read.table, read.csv, for reading tabular data

readLines, for reading lines of a text file

source, for reading in R code files (inverse of dump)

dget, for reading in R code files (inverse of dput)

load, for reading in saved workspaces

unserialize, for reading single R objects in binary form

Writing Data

There are analogous functions for writing data to files

write.table

writeLines

dump

dput

save

serialize

Reading Data Files with read.table

The read.table function is one of the most commonly used functions for reading data. It has a few important arguments:

file, the name of a file, or a connection

header, logical indicating if the file has a header line

sep, a string indicating how the columns are separated

colClasses, a character vector indicating the class of each column in the dataset

nrows, the number of rows in the dataset

comment.char, a character string indicating the comment character s

kip, the number of lines to skip from the beginning

stringsAsFactors, should character variables be coded as factors?

read.table

For small to moderately sized datasets, you can usually call read.table without specifying any other arguments

data <- read.table("foo.txt")

R will automatically

skip lines that begin with a #

figure out how many rows there are (and how much memory needs to be allocated)

figure what type of variable is in each column of the table Telling R all these things directly makes R run faster and more efficiently.

read.csv is identical to read.table except that the default separator is a comma.

Reading in Larger Datasets with read.table

With much larger datasets, doing the following things will make your life easier and will prevent R from choking.

Read the help page for read.table, which contains many hints

Make a rough calculation of the memory required to store your dataset. If the dataset is larger than the amount of RAM on your computer, you can probably stop right here.

Set comment.char = "" if there are no commented lines in your file.

Use the colClasses argument. Specifying this option instead of using the default can make ’read.table’ run MUCH faster, often twice as fast. In order to use this option, you have to know the class of each column in your data frame. If all of the columns are “numeric”, for example, then you can just set colClasses = "numeric". A quick an dirty way to figure out the classes of each column is the following:

initial <- read.table("datatable.txt", nrows = 100)

classes <- sapply(initial, class)

tabAll <- read.table("datatable.txt", colClasses = classes)

Set nrows. This doesn’t make R run faster but it helps with memory usage. A mild overestimate is okay. You can use the Unix tool wc to calculate the number of lines in a file.

Know Thy System

In general, when using R with larger datasets, it’s useful to know a few things about your system.

How much memory is available?

What other applications are in use?

Are there other users logged into the same system?

What operating system? Is the OS 32 or 64 bit?

Calculating Memory Requirements

Calculating Memory Requirements I have a data frame with 1,500,000 rows and 120 columns, all of which are numeric data. Roughly, how much memory is required to store this data frame? 1,500,000 × 120 × 8 bytes/numeric = 1440000000 bytes = 1440000000 / bytes/MB = 1,373.29 MB = 1.34 GB

Textual Formats

dumping and dputing are useful because the resulting textual format is edit-able, and in the case of corruption, potentially recoverable.

Unlike writing out a table or csv file, dump and dput preserve the metadata (sacrificing some readability), so that another user doesn’t have to specify it all over again.

Textual formats can work much better with version control programs like subversion or git which can only track changes meaningfully in text files

Textual formats can be longer-lived; if there is corruption somewhere in the file, it can be easier to fix the problem

Textual formats adhere to the “Unix philosophy”

Downside: The format is not very space-efficient

dput-ting R Objects

Another way to pass data around is by deparsing the R object with dput and reading it back in using dget.

> y <- data.frame(a = 1, b = "a")

> dput(y) structure(list(a = 1, b = structure(1L, .Label = "a", class = "factor")), .Names = c("a", "b"), row.names = c(NA, -1L), class = "data.frame")

> dput(y, file = "y.R")

> new.y <- dget("y.R")

> new.y

 a b

1 1 a

Dumping R Objects

Multiple objects can be deparsed using the dump function and read back in using source

> x <- "foo"

> y <- data.frame(a = 1, b = "a")

> dump(c("x", "y"), file = "data.R")

> rm(x, y)

> source("data.R")

 > y

 a b

 1 1 a

> x

[1] "foo"

Interfaces to the Outside World

Data are read in using connection interfaces. Connections can be made to files (most common) or to other more exotic things.

file, opens a connection to a file

gzfile, opens a connection to a file compressed with gzip

bzfile, opens a connection to a file compressed with bzip2

url, opens a connection to a webpage

File Connections

> str(file) function (description = "", open = "", blocking = TRUE, encoding = getOption("encoding"))

description is the name of the file

open is a code indicating

“r” read only

“w” writing (and initializing a new file)

“a” appending

“rb”, “wb”, “ab” reading, writing, or appending in binary mode (Windows)

Connections

In general, connections are powerful tools that let you navigate files or other external objects. In practice, we often don’t need to deal with the connection interface directly.

con <- file("foo.txt", "r")

data <- read.csv(con)

close(con)

is the same as

data <- read.csv("foo.txt")

R Programming week1-Reading Data的更多相关文章

  1. Coursera系列-R Programming第二周

    博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html  --- 好久没发博客 且容我大吼一句 终于做完这周R Progra ...

  2. Coursera系列-R Programming第三周-词法作用域

    完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...

  3. 让reddit/r/programming炸锅的一个帖子,还是挺有意思的

    这是原帖 http://www.reddit.com/r/programming/comments/358tnp/five_programming_problems_every_software_en ...

  4. 【MySQL】MySQL同步报错-> Last_IO_Error: Got fatal error 1236 from master when reading data from binary log

    这个报错网上搜索了一下,大部分是由于MySQL意外关闭或强制重启造成的binlog文件事务点读取异常造成的主从同步报错 Last_IO_Error: Got fatal error 1236 from ...

  5. mysql 主从 Got fatal error 1236 from master when reading data from binary log: 'Could not find first 错误

    本地MySQL环境,是两台MySQL做M-M复制.今天发现错误信息: mysql 5.5.28-log> show slave status\G ************************ ...

  6. Last_IO_Errno: 1236 Last_IO_Error: Got fatal error 1236 from master when reading data from binary lo

    mysql> show slave status\G *************************** 1. row ***************************         ...

  7. SQL data reader reading data performance test

    /*Author: Jiangong SUN*/ As I've manipulated a lot of data using SQL data reader in recent project. ...

  8. R语言数据分析利器data.table包 —— 数据框结构处理精讲

        R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理 ...

  9. OpenTSDB-Querying or Reading Data

    Querying or Reading Data OpenTSDB offers a number of means to extract data such as CLI tools, an HTT ...

随机推荐

  1. 加密壳之ACProtect之OEP的处理

    菜驹也玩加密壳之ACProtect之OEP的处理 附件下载:加壳文件和pdf 1.      加密过程: ACProctect v1.41版本号 分析对OEP入口点代码的偷取 2.      分析过程 ...

  2. Android开发系列(二十七):使用ProgressDialog创建进度对话框

    进度对话框在寻常的应用中非经常见,比方下载的时候,打开页面的时候.转移文件等等.有环形的.有长条形的. 基本就这两种 创建进度对话框的两种方式: 1.创建ProgressDialog实例,然后调用Pr ...

  3. [IT学习]Learn Python the Hard Way (Using Python 3)笨办法学Python3版本

    黑客余弦先生在知道创宇的知道创宇研发技能表v3.1中提到了入门Python的一本好书<Learn Python the Hard Way(英文版链接)>.其中的代码全部是2.7版本. 如果 ...

  4. 问题:IIS部署 MVC项目 (autofac) 错误解决

    http://www.cnblogs.com/yelaiju/p/3375168.html Could not load file or assembly 'System.Core, Version= ...

  5. 剑指Offer面试题11(Java版):数值的整数次方

    题目:实现函数double Power(double base,int exponent),求base的exponent次方.不得使用库函数,同一时候不须要考虑大数问题 1.自以为非常easy的解法: ...

  6. 设计模式-(10)观察者模式 (swift版)

    一,概念 观察者(Observer)模式又名发布-订阅(Publish/Subscribe)模式.GOF给观察者模式如下定义:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它 ...

  7. Android ConstraintLayout的基本使用

    升级Android studio到2.3版本之后,发现新建Activity或fragment时,xml布局默认布局由RelativeLayout更改为ConstraintLayout了,既然已经推荐使 ...

  8. 关于Vim的一个配置文件

    昨天晚上+今天早上怒赶了一份关于Vim的自动化配置的Shell脚本,之前在github上见过一个这么一个类似的脚本项目,然后又见到同校的有一位师兄也写过这么一个类似的脚本文件,然后我也抽分跟着写一份属 ...

  9. codeforces 689C C. Mike and Chocolate Thieves(二分)

    题目链接: C. Mike and Chocolate Thieves time limit per test 2 seconds memory limit per test 256 megabyte ...

  10. bzoj 1913: [Apio2010]signaling 信号覆盖【旋转卡壳(?)】

    参考:https://blog.csdn.net/qpswwww/article/details/45334033 讲的很清楚 做法比较像旋转卡壳但是具体是不是我也不清楚.. 首先知道只要求出每种方案 ...